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In the immersed interface method (IIM), the boundaries of objects in a fluid are treated
as immersed interfaces in the fluid. Singular forces are used to represent the effects of the
objects on the fluid, and jump conditions induced by the singular forces are incorporated
into numerical schemes to simulate the flow. Previously, the immersed interface method for
simulating smooth rigid objects with prescribed motion in 2D & 3D incompressible viscous
flows has been developed by Xu [72-74]. In this thesis, we extend the method for rigid
objects with non-smooth boundaries by computing necessary jump conditions using line
segment representation of 2D objects. We also present the parallelization strategy for the
development of a high-performance program for distributed-memory parallel computing with
Message Passing Interface(MPI). Different tests are performed, and numerical results and

comparisons are given to study the accuracy, efficiency and robustness of our method.
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Chapter 1

INTRODUCTION

1.1. Problem Statement

In the field of computational fluid mechanics, one important topic is how to resolve
moving boundaries and their effects on fluid flow accurately and efficiently. For example,
biolocomotion is very popular in the past several decades and the study of insect flight
aerodynamics has attracted lots of researchers. When a butterfly flaps its wings, we would
like to know what is the velocity and pressure around the wings and the fluid force and
torque. Think about it further, if we design a wing by ourselves, how can we simulate the
aerodynamics of the flapping wings. If the wings have complex geometries, how can we
examine if it works as we expect. All the thoughts bring us to a big question that, can we
design a method, which is suitable to test aerodynamics of moving objects with complex
geometries, and the problem can be solved accurately and efficiently. Driven by the question
above, we started the study of immersed interface method for flow around objects with
non-smooth boundaries.

This work is difficult and challenging. Because the object could be moving or static, we
need to think about whether to use Lagrangian method to focus on the object or use Eulerian
method to focus on the space. For the objects in the flow field, we need develop a method to
couple the movement with the flow field, and think about how to handle the domain inside
and outside of the objects. In addition, the method should be able to handle objects with
different complex geometries and can solve the problem stably. Assume we put hundreds of
moving objects into the flow field, the method should be efficient to solve the problem and
the computational cost should not be increased dramatically with more objects. Besides,

the method. should-have.the.good capacity to be easily implemented into a high-performance

1
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program to speed up the problem solving process. For complicated physics problems with
a large computational domain, a serial program is not enough to handle all the work, but a
highly efficient parallel method is not easy to develop.

For the past decades, many numerical methods have been developed to address problems
in this area and they all have their advantages and disadvantages. We will give a brief review

in the next section.

1.2. Literature Review

In the Lagrangian methods, we will track the movement of objects as well as the physical
properties. The computational mesh will be regenerated with the movement of objects.
One of the most popular mesh generation method is called Chimera mesh or overset mesh.
The main idea is to decompose the complex geometry into a system of overlapping grids
and interpolation is used to exchange the boundary information. This method has high
quality under large displacements and efficient for high-order accurate methods. Details can
be found in [39,45,60]. However, the computational cost is large due to the regeneration
of grids for moving boundary problems. Most researchers would combine Lagrangian and
Eulerian methods to solve the problems involving the fluid motion.

One common approach to resolve the moving boundaries problem is based on Cartesian
grids. Objects will move in the fixed computational domain and the position will be calcu-
lated at each time step. Researchers have been working on developing new Cartesian grid
methods to reduce the computational cost while maintain the accuracy and efficiency. Among
the developed Cartesian grid methods, some can be applied to solve flow problems for mov-
ing objects with the prescribed motion. Examples of these methods include the immersed
boundary method [19,25, 26,43, 44, 48], sharp interface method [65,80], immersed interface
method [29, 30, 34, 77|, Lattice Boltzmann method [27], Russell and Wang’s method [50],
ghost cell methods [4,64], etc. In the sharp interface method, a mixed Eulerian—Lagrangian
framework is employed, which treats the immersed boundary as a sharp interface. Second-

order accurate finite-volume method is used to discretize the Navier-Stokes equations and a
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second-order accurate fractional-step scheme is used for time marching. Boundary motion
can be properly produced by translating each boundary particle with the prescribed velocity.
For the Lattice Boltzmann method, it can be simply considered as a numerical solver of the
Boltzmann equation. A regular Eulerian grid is used for the flow domain and a Lagrangian
grid is used to follow the moving objects in the flow field. The velocity field of the fluid and
moving objects is solved by adding a force density term into the Lattice Boltzmann equa-
tion. In Russell and Wang’s method, instead of solving the velocity and pressure directly,
they solve the flow problem using a streamfunction—vorticity formulation and represent the
embedded objects with discontinuities. In their method, they first solve the Poisson equation
for streamfunction with discontinuities at the boundary. Then they solve a homogeneous
inviscid problem using boundary method. Vorticity is distributed around object boundary to
satisfy no-slip condition, and the vorticity is integrated in time within the effects of singular
sources. For the ghost cell method, ghost cells are fictitious cells inside the object. The
grid cells can be separated by the object boundary and finite difference approach can no
longer be applied. Then ghost cells are needed and boundary conditions of the object can be
implicitly incorporated through the ghost cells. Ghost cells can be updated by extrapolating
values from the flow field and the boundary.

Among all the methods above, the immersed boundary method is most notable. The
immersed boundary method was first introduced by Peskin in 1972 [43] to simulate blood
flow in human heart. A detailed explanation can be found in [44]. The immersed boundary
method treats the boundary of an immersed object as a set of Lagrangian fluid particles. A
singular force is added to the Navier-Stokes equation and determined by fluid particles to
represent the effects of the object on the fluid. The force distribution is described as a Dirac
delta function. Because of the formulation of the Navier-Stokes equation, the immersed
boundary method has the advantage that it can handle multiple moving objects easily and
efficiently. A Cartesian grid method is used for fluid and Lagrangian grid used for the
immersed boundary. The Naiver-Stokes equation can be solved with the communication

between the fluid and immersed boundary. When the immersed boundary method was first
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introduced, some disadvantages of the initial implementation were exposed, and one of the
biggest is it only has first order accuracy. A lot of research have been done to improve the

immersed boundary method in the recent years.

1.3. Immersed Interface Method

Motivated by the goal to achieve second-order accuracy, LeVeque and Li introduced
the immersed interface method in 1994 [30,31]. The immersed boundary method and im-
mersed interface method share the same formulation, and the biggest difference is that in the
immersed interface method the finite difference scheme is used to incorporate the jump con-
ditions caused by the Dirac delta function. If the necessary jump conditions are known, then
second-order or even higher order accuracy can be secured. The immersed interface method
was first introduced to solve elliptic equations [30] and Stokes equation [31]. Later Wieg-
mann and Bube extented the immersed interface method to nonlinear parabolic equations
and Poisson equations with piecewise smooth solutions [69,70]. In [29,34], the immersed in-
terface method was extented to solve 2D incompressible Navier-Stokes equations and in [40]
it was used to solve the 1D Schrédinger equation. Meanwhile, for the past decade the im-
mersed interface method was developed based on both finite difference method [77,79] and
the finite element method [32,35] to provide large potential for implementation. In the pre-
vious work of Xu [78], he systematically derived jump conditions of all first-, second-, and
third-order derivatives of the velocity and the pressure by construction of singular force, as
well as the jump conditions of first- and second-order temporal derivatives of the velocity for
3D incompressible Navier-Stokes equations. With these jump conditions, he implemented
the immersed interface method to simulate 2D & 3D incompressible viscous flow with mov-
ing boundaries [77,79]. His method is proved to be stable, accurate and efficient to handle
single or multiple smooth moving objects.

The shortcoming of Xu’s previous work is this method can only be applied to simu-
late flow around smooth objects, like a circular cylinder or a rounded plate. Previously,

cubic splines were used to parametrize the immersed interface, but the interface of object
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with complex/non-smooth boundaries cannot be represented in the same pattern. In order
to overcome this weakness, our goal here is to develop the immersed interface method for
incompressible viscous flow with complex/non-smooth boundaries in both stationary and
moving conditions, which can be resolved stably, accurately and efficiently. In our current
method, we use line segment panels to represent the interface instead of using cubic spline
for surface parametrization. Instead of expressing jump conditions through construction of
a singular force, here jump conditions are directly calculated based on the fluid field. We re-
derive the principle jump conditions and first- and second-order Cartesian jump conditions
for velocity and pressure, such that they can be applied to non-smooth objects. Besides,
the new developed method can be easily modified and implemented into a high-performance
parallel program. In this thesis there are sufficient details of method derivation, implemen-
tation and the design of the parallel program. Anyone who is interested in our method can

program and test it.

1.4. Parallel/High-Performance Computing

In the past, programs are written in the way that the instructions will be executed one by
one sequentially and can only be executed on one processor. We call this kind of program a
serial program. But with the fast development of software and hardware in the past decades,
the computers have much more power to handle heavy-duty computations. This has helped
the researchers from the scientific computing field to develop more powerful methods, and
CFD is a very good example. Nowadays, most of the numerical methods are developed based
on the idea of parallel computing. By doing this, a big problem can be split into many small
tasks and sent to different processors. Same instructions can be executed at the same time
on different processors and an overall control is used to manage the computation. Parallel
computing has the ability to solve very large problems which cannot be executed on only
one processor and can save computational time. Parallel computing is widely used in almost

all areas of science and engineering, in both academia and industry.
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Parallel computers are mainly designed in two ways, one computer with multiple cores
or multiple computers connected to each other using network connection. Based on the
structure of computing sources, the parallel program can be identified as a shared memory
program or distributed memory program. Shared memory programming is mainly for one
computer with multiple cores, and all cores can pull out information from the same memory.
OpenMP is one of the most popular application program interfaces(API) that supports it and
details can be found in [12]. In distributed memory programming, each processor will store
the information in local memory and exchange it with neighboring processors if necessary.
The Message Passing Interface Standard(MPI) from Argonne National Laboratory is mainly

designed for this purpose, as described in [1]:

The Message Passing Interface Standard (MPI) is a message passing library
standard based on the consensus of the MPI Forum, which has over 40 partici-
pating organizations, including vendors, researchers, software library developers,
and users. The goal of the Message Passing Interface is to establish a portable,
efficient, and flexible standard for message passing that will be widely used for
writing message passing programs. As such, MPI is the first standardized, ven-
dor independent, message passing library. The advantages of developing message
passing software using MPI closely match the design goals of portability, effi-
ciency, and flexibility. MPI is not an IEEE or ISO standard, but has in fact,
become the industry standard for writing message passing programs on HPC

platforms.

MPI and OpenMP have very good support for C++ and FORTRAN, and are widely used
in high-performance computing/scientific computing field. They can also be mixed to create
a hybrid MPI/OMP program. Due to time limits, the development of our parallel program
is only based on MPL

Traditionally, parallel programming is mainly developed based on the structure of the cen-
tral processing units(CPU), but with the fast development of graphics processing units(GPU),

more and more researchers are moving to study the possibility of parallel programming on
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GPUs. CPUs and GPUs have different structures. Even though each core on a GPU is
much slower than a CPU and also the memory cache is much smaller, GPU still has its own
strength. Nowadays each CPU can only have no more than 100 cores, but GPUs could have
a few thousands cores on a single unit, which shows the potential of highly powerful comput-
ing capacity. Some APIs are developed to help people develop parallel programs on GPUs.
OpenMP supports GPU programming, and there are other popular APIs such as CUDA,
OpenCL and OpenACC. In the CFD area, some numerical methods have been developed
for parallel programming on GPUs. In [61,62], Thibault used CUDA kernels to implement
the projection algorithm to solve the Navier-Stokes equations for incompressible fluid flow.
In [49], Rossinelli and Koumoutsakos implemented the vortex particle method for incom-
pressible flow simulations on GPUs. In [11], Castonguay presented a high-order compressible
viscous flow solver for mixed unstructured grids on multi-GPU. Some researchers are also
working on combining CPU and GPU programing together to solve flow problems [21,71].
Parallel programming has a high standard requirement for both hardware and software.
Regular personal computers are usually not able to handle high-performance programs. SMU
has its own high-performance facility, ManeFrame, open to all the faculties and students,

below are the technical details as of this writing:

e 1084 nodes with 24 GB of RAM

20 nodes with 192 GB of RAM

1.2 PB high performance parallel Lustre file system

All nodes have 8-core Intel® Xeon® CPU X5560 @ 2.80GHz 107 processors

All nodes are connected by a 20Gbps DDR InfiniBand connection to the core backbone

InfiniBand network

Scientific Linux 6 (64 bit) operating system
e SLURM resource scheduler

All the parallel simulations in this thesis are conducted on ManeFrame.
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1.5. Outline

This thesis is organized as follows. In chapter 2, we present the mathematical formulation
of the governing equations and the modified finite difference schemes with jump conditions
in the immersed interface method. In chapter 3, the new method of derivation for principle
and Cartesian jump conditions will be explained in the 2D case. In chapter 4, we will
talk about implementation of our current method, including the spatial discretization and
temporal discretization. In chapter 5, we will present the parallelization of our method,
including domain decomposition, data structure, communication and other improvements.
In chapter 6, different flow problems are tested to study the stability, accuracy, efficiency

and robustness of our current method. In chapter 7, conclusions will be given.
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Chapter 2

GOVERNING EQUATIONS AND FINITE DIFFERENCE SCHEMES

In this chapter, we present the model of the immersed interface method for flow with
non-smooth boundaries. In the first section, we will present the Governing equations used
in the immersed interface method. In the second section, we will present the finite difference

method used for the treatment of the computational domain.

2.1. Governing Equations

In the immersed interface method, we treat an immersed object boundary as an immersed
interface, and the effect of the object on the fluids is represented as the singular force.
Consider the incompressible viscous flow with an object, the non-dimensional 2D Navier-

Stokes equations subject to singular force are given as below,

%}v-(m:—vp+éAmm/Ff(X;t)a(f—X)dz (2.1)

V.id=0 (2.2)

where @ = (u,v) is the velocity, p is the pressure. Re is the Reynolds number, I' is the
object boundary immersed in the fluid. ¢ = (g,,q,) is the finite body force to enforce the
rigid motion of the fluid enclosed by the object boundary. f is the density of the singular
force, ¢ () is the 2D Dirac § function, F = fr f()?,t) ) (f— )?) dl is the singular force
representing the effect of object on the fluid. ¥ = (x,y) is the Cartesian coordinates, and
X = (X,Y) is the Cartesian coordinates of boundary vertices. Multiple objects can be
represented in the similar manner.

In our current method, the object has rigid boundaries and has the potential to be

extended to deforming objects in the future. The objects can be any kind of shape, with

smooth o non-smooth.boundaries. The objects are either static or in prescribed motion, so

9
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the position and relative movement of the object can be a function of time, which is

X =X(t)=(X(1),Y()) (2.3a)
X(t) = x.(t) + Xo x cos(0(t)) — Yo = sin(0(t)) (2.3b)
Y (t) = ye(t) + Xo * cos(0(t)) + Yo * sin(6(¢)) (2.3¢)

(xc(t),ye(t)) is the Cartesian coordinates of a fixed reference point with respect to the bound-
ary, (Xo, Yp) is the initial coordinates of vertices, and 6(t) is the rotation angle of the object.
Equations (2.1) and (2.2) are defined on the entire domain 2 as shown in Figure 2.1, where
Q7" is the domain of the fluid and ©Q~ is the domain inside the object. The computational
domain is fixed and will not change with the time. 77 is the unit normal vector on the vertices

and 7 is the unit tangential vector, where 7 = (7,,7,) = (—ny, ny).

[0k

all

y|— B

X

Figure 2.1: Geometric description of the immersed object.

2.2. Finite Difference Scheme

On the boundary, jump conditions are induced by the singular force and discontinuous

Differen m the immersed boundary method which approximates the Dirac
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0 function by using discretized smooth functions, the immersed interface method directly
modifies a finite difference scheme to incorporate the jump conditions. Previously from the
work of Xu and Wang [78], they presented the generalized Taylor expansion for a piecewise
smooth function, which is expressed as below,
00 (n)( ,+ % ] (n)
- g5 9" (z)
[Y (Z¢+1) - Z (, ° )(Zi+1 —20)" + Z Z u(%‘ﬂ —z)" (2.4)

n! n!
n=0 =1 n=0

where ¢(z) is a piecewise smooth function as shown in Figure 2.2. [g(”) (21)] denotes the jump
conditions along the z direction, [¢™(z)] = ¢™(z) — g™ (2;"). The proof for equation (2.4)
was presented in [78]. Based on this, second order central finite difference schemes are given
in equations (2.5a) and (2.5b). Interpolation scheme with incorporation of jump conditions
is also developed and given in equation (2.6), where g(z) is discontinuous at z = § and z =7

as shown in Figure 2.2.

9(2)

zic1 & 2 no Zitl

20 21 29 Z3 e Zi—1 Zi Zi+1 oz

Figure 2.2: Examples for generalized Taylor expansion and finite difference scheme
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9(z) = % + O(h?) + % [82—(5)] (i1 — &) — % [8%_(:)] (zi41 — M) (2.6)

Equation (2.5a) is the first-order derivative of function g¢(z) with incorporation of jump
conditions and equation (2.5b) is the second-order derivative of the function ¢g(z). The inter-
polation equation (2.6) also gives second-order accuracy. The development of the above finite
difference schemes and interpolation scheme is very important because the whole method is
developed based on the finite difference method and how to calculate and use these jump

conditions is the key to the success of our method.
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Chapter 3

FORMULATION OF JUMP CONDITIONS

Previously from the work of Xu and Wang [78], the formulation of necessary jump con-
ditions for the immersed interface method in three-dimensional flow simulation has been
systematically derived. The formulation of the jump conditions has been applied in the 2D
immersed interface method in [72,77] and the 3D immersed interface method in [79]. The
method is proved to be stable, accurate and efficient. But, since cubic splines were used
to parametrize the object boundary in 2D, these jump conditions can only be applied to
objects with smooth boundaries, like circular cylinder or rounded plate. When it comes
to non-smooth objects like square cylinder or rectangular wing, the previous method is no
longer valid. Inspired by this, we have developed new formulation of the jump conditions
which can be applied to non-smooth objects.

In our current method, there are two main types of jump conditions are needed: Principle
jump conditions and Cartesian jump conditions. Principle jump conditions of velocity and
pressure across the closed surface, and along their normal directions. Cartesian jump condi-
tions are along the z and y directions of the Cartesian coordinates, and calculated using the
principle jump conditions. Below are the jump conditions we need in the immersed interface

method,

e Principle jump conditions

(@, [5a). [Ad], [p), [55], (A7)

e Cartesian jump conditions

[5_17 ] ou| |o%a| |9 i

ozl |0y | |0x2 | |0y |’ | OzOy

(%], |2 Pp| |2p| | Zp
Oxl | dy||0x2| 7 |0y? |’ | Ox0y
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In the previous approach [72,77-79], jump conditions are expressed in terms of singular force.

In the 2D case, the formulation for singular force is shown as below,

hz/(é%ﬁH%OJm (3.1a)
= —é ( |p+—2é> (3.1b)

fn is the normal singular force and f, is the tangential singular force. w is the vorticity, b, is
the tangential body force, a is the Lagrangian parameter and J = ||%—§||2. After f, and f;
known, the jump conditions can be expressed using the singular force. Example of principle

jump conditions of pressure is shown below

[p] = fa (3.2a)
B—ﬂ = %]: + [bn] (3.2b)

Different from the previous work, we no longer need to calculate the singular force to
express the jump conditions. Instead, the jump conditions are directly computed based on
the velocity and pressure field. In the work of Xu and Pearson [76], they presented a method
to compute the necessary Cartesian jump conditions from given principle jump conditions
using a triangular mesh representation of a 3D interface. The triangular mesh representation
is simpler and robuster than interface parametrization for complex or non-smooth interface.
We have modified the method for computing Cartesian jump conditions using a line segment
panel representation of a 2D interface. Here we focus on the development of the method for
computing jump conditions.

In the first section, we will present the derivation of principle and Cartesian jump con-
ditions for velocity . In the second section, we will present the derivation of principle and
Cartesian jump conditions for pressure p. In the third section, we will present the derivation

of fluid force calculation.
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3.1. Jump Conditions for «

For the velocity u, we will first show the derivation of principle jump conditions then the
Cartesian jump conditions, as Cartesian jump conditions are derived from its principle jump

conditions.

3.1.1. Principle jump conditions

—

The principle jump conditions for @ are [i], [2Z] and [Ad]

e [u]
The principle jump conditions of velocity is [i] = 0, as @ is finite and continuous at

the interface.

di

o [5]

For the principle jump conditions of the derivative @ along normal direction, it can be
expressed as

ou ou ou

As for the 3D case shown in [73], 2Z|.- = Q) x 7, which is the formula for the rigid

motion of an object. When it comes to 2D,

ou -
8_:’Z|F_: 0 - T, (34)

where 6 is the angular velocity of rotation for the objects in the Cartesian system and
is changing with time, § = 0(t).

To calculate g—g|p+, we applied one-sided finite difference scheme along the normal
direction 77 as shown in Figure 3.1. It can be expressed as

O@,  —3(Sy) + 4@(Sy) — @(Ss)

an/T 20m

on

+ O(0n?) (3.5)

where dn is the distance between two adjacent points along normal direction 77 and

on > +/ox? + 0y? to avoid the two adjacent points are in the same grid cell. For
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velocity 4 at vertex Sy on the boundary, it is the prescribed velocity of the boundary,
w(Sy) =2, —0- (Y — ) (3.6a)

U(SO) = yc + 0 : (X - xc) (36b)

(¢, ye) is the Cartesian coordinates of a fixed reference point with respect to the
boundary, (Z.,4y.) is the velocity of the reference point movement, and (X,Y) is the
current coordinates of the vertex Sy. The velocity at points S; and Sy are interpolated
from four surrounding points from the Cartesian grid cell. For example, velocity at
the point S5 can be interpolated from points I, 11,111, IV . If higher order accuracy

for g—Z|p+ is required, we can add more points on normal direction to achieve that.

m III*

LN
’

Sy

ox

Figure 3.1: One-sided finite difference scheme

o [Ad]

For [Ad], it can be expressed using natural coordinates, which is given below,

AT] = {%} . {%] (3.7)
a?a] _ 0%

. . 22 22
where « is the curvature of the object boundary, [W = th—%hu and %‘1"7: 0.
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2i .. . . . . .
For %hw, similarly we can use one-sided finite difference scheme, which gives

0%, 2i(Sp) — 5 (Sy) + 4@ (Sy) — i (S5)

3z = GAE +0(67) (3.8)
%h‘% and g—g|p+ now are second order accurate. With the above derivations, we can
achieve
0*d ou
Al = — |t — 3.9
AT = S5l o (39)

which can be easy to calculate with information already known.

3.1.2. First-order Cartesian jump conditions

For the first-order Cartesian jump conditions, we need to calculate [8—17] and [—] As

8
<

we know [i] = 0, [g—ﬂ = 0, we can come to the two equations below

ou] [0 o
ow]  [oa i
5] = [2) e [ 100)

such that the following linear system can be built as

o
Ng Ty [8—5]

Now we have the expression for the first-order Cartesian jump conditions

{@} - Ty {8—“] (3.11a)
ox Tg Ny — Ty Ny | ON
ou Ta ou
{%} - {a_n] (3.11b)

3.1.3. Second-order Cartesian jump conditions

For the second-order Cartesian jump conditions, we need to calculate [%ﬁ], [%] and

[ 8‘9; gy ], and they are not as straightforward to calculate as the first-order Cartesian jump
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conditions. Assume on any line segment panel with end points A and B as shown in Figure

o0 |ou 1 ot ot
or {%L ~ 14D ({%L - {a—x} A) +OlAB).
ou

and aﬁ [a—] can be approximated similarly. We can derive another linear system for second-
T Y

3.2, we have

order Cartesian jump conditions based on the equations below

L [ora]  [0%a
[Ad] = [@] + la_yﬁ] (3.12a)
o [oi 02 T
o [oi Ol T
5 5 = Lawa] =+ ) (3420

Figure 3.2: Representation of 2D interface in line segment panels

The system can be built as

10 1 [%} [Ad]

T Ty 0 [%] - a%[%]

won) L[5 [F(E]
18
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Based on this linear system we can derive

o] 1 [ 9 foa] 9[0T, 4.
{81:2_ T 212 |Tor lox]  Mor Loy 7 [AU]] (3.13a)
Pal 1 [ o foa] . o [oad] )

[axay_ ~ 212 |ar o) T or ay) T [Au]] (3.13b)
o] L [ooa] 9 [0T] | .-
{3@/2_ T2z |"or oy Tor |ox] T [AU]] (3.13¢)

Now we have all the necessary formulas for principle and Cartesian jump conditions of

velocity u, and they can be easily coded into program.

3.2. Jump Conditions for pressure p

In this section, we will first show how to derive the Cartesian jump conditions of pressure

derivatives, then we will present how to derive principle jump conditions.

3.2.1. First-order Cartesian jump conditions

For first-order Cartesian jump conditions [g—ﬂ and [g—;’], we can calculate [Vp]. As we

know, Vp term is in the Navier-Stokes equation,

ou 1

aJrv.(a”):—Vp+ReAﬁJr(jJr/Ff()?,t)é(f—X)dl

Different from [76], where they compute [Vp] by building a matrix problem, here we directly

take jump conditions of the Navier-Stokes equations with the information already known as

below,
[@ =0
5] - 5]+ oo

7= | [7(z.0)o (s %) | =0

Then the Navier-Stokes equation can be reduced to

Vil = =[]+ (4 (3.15)
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where [Vp] is the first-order Cartesian jump condition, [A#] is known from the previous
section, ¢ is piecewise defined and has jump conditions across the boundary [73]. As for

body force ¢, inside the boundary,
lr-=0- ()? — f) (3.16)

where 6 is the angular acceleration of object rotation. Outside boundary, ¢lr+= 0. Thus the
jump condition of [q] is

@ =—0-(X-z) (3.17)

Now we have the first-order Cartesian jump conditions as below

{g_ﬂ _ é A — - (X — 2) (3.184)
[g_z] — é [Av] — - (Y — ) (3.18b)

3.2.2. Second-order Cartesian jump conditions

Similar as second-order Cartesian jump conditions for @, we use the same strategy to

calculate [—gig ], [—g:j; ] and [—afgy] On panel AB, since [Vp|, and [Vp] are already known,
we can derive

9 [Volg — [Vpla

— ~ AB 1

Build the linear system, we have

1o |2 Ap]
2 —

non 0| |28 = |22

0 ™ 7y _[3;5}_ _a% [2—’;}_
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The second-order Cartesian jump conditions for p can be derived as below

orp] 1 o [op 9 Tap

_3552} T2+ { or {%} ~ or {8 } 7 [Ap]] (3.202)
8% 1 9 [op o [op

ﬁxﬁy] T2+ T2 [ or [%} T “or [8 } TeTy [AP]} (3.20b)
o] 1 o [op o [op]

ﬁy?] IR {yaf {83/] “or {a } A [Ap]} (3-20¢)

3.2.3. Principle jump conditions

For principle jump conditions of pressure p, we need to calculate [p], [a—p] and [Apl.

« [5]

Since the first-order Cartesian jump condition is known, we have

dp
3.21
52| =1 (3:21)
* [Ap]
By taking divergence of Navier-Stokes equation (2.1), we have the pressure Poisson
equation
Ap=s,+V- (<7+ ﬁ) (3.22)
where
oD Oudv  OJu v
=—| = 2uD) — —AD —
% <6t V- ) Re > (0m dy By 890)
D=V-u

The divergence free condition is better enforced here by including the terms with D.

By taking jump conditions of equation (3.22), we have

8u8v} 5 [8u av}

[Ap] = 2{8 3 9y 92 (3.24)

e [1]

For principle jump condition [p], unlike the other principle jump conditions, it cannot
be directly computed locally. Here we are using a different strategy. Since the first-

ondition [Vp] is already known, then at any vertex on boundary,
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we have

dp

[8_71} = [Vp]- 7 (3.25a)
[5_71_92] _ v A (3.25b)

For example, on panel AB and AF as shown in Figure 3.2, Simpson’s rule can be

applied to achieve the equations below

BTropT |AB| ([ 9p ] [ Op ] [ Op ]
it - — ~ ! —_— 4 | — —_— 2
/A_aﬁ_ W= -a~ T |gr) Hon) Hlae),) @2

Frop] |AF| ([ op] [ Op ] [ Op ]
/A | = e~ oy~ o) 4 oe), Lo, (3.26D)

where [ is the length parameter along a line segment, M; is the center of panel AB

and M is the center of panel AF. [5—7{’1] and [g—f;] can be computed using the
M, M,

same strategy as we presented in previous sections. By adding equations (3.26a) and

(3.26b) together, we have
plp + [Plp — 2[ply = hsa (3.27)

where

_|AB| ([ op dp dp
ThSA— 6 87'1 A+4 87'1 M1+ 6’7’1 B
|AF| ([ 9p dp dp
+ 6 67’2 A+4 87’2 M2+ 87'2 F

By repeating using the Simpson’s rule for all vertices on the boundary, there will be
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enough information to build the Topelitz matrix problem below:

-—2 1 0 0 1 -
1 -2 1 ... 0 0 ] 4 rhsa
o 1 -2 ... 0 0 Pl 5 rhsp
- (3.28)
0o 0 ... 1 =2 1] |Plg rhsp
1 0 0o 1 =2

Notice that this matrix problem is singular and the solution is not unique. However,

we are solving it for principle jump conditions of pressure p, that means

[p] = plr+—plr- (3.29)

Inside the boundary, we have an analytical solution for pressure p|p- of motion for

rigid objects,

d?z, d?y. 1., 9 2
T X = Y 0P (X =2’ + (Y —ye)’) +pe (3.30)

p|r—: -

where p. is an arbitrary constant. Then for the principle jump condition [p], it is
subject to an arbitrary constant too. In this way, we can safely assume that at point

F, [p]r = 0. Apply this result to matrix problem (3.28), we will have

-2 1 ... 0| [[pl4 rhs s

1 =2 ... 0| |lp, rhsp
- (3.31)

0 ... 1 =2||pls rhsg

Now this matrix problem is reduced to non-singular and can be solved easily by Gaus-

sian elimination or other classical methods.
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3.3. Fluid Force Calculation

As we know drag and lift coefficients are two important data for us to observe the behavior
of any flow with objects. The previous approach for computing fluid force is based on singular
force [77,79], which cannot be applied here in our new method. In general, the fluid force G

applied by a fluid to an object can be calculated by [79]

= L, 1 [ou

We can find p|p+ easily by one-sided extrapolation. For (%) I+, it can be computed by

ou ou ou
O = [%] Gl (3.33)
where
ou ou ou
— == n, 1. 3.34
5] = [z e+ () 33
ou .
=0 - 3.34b
o= fr (3.34h)
[g—f] and [g—’;] are already known as Cartesian jump conditions. Here [ is the length pa-

rameter along the boundary I', then finally we can sum over the whole boundary using the

Trapezoidal rule to find G.
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Chapter 4

IMPLEMENTATION OF THE IMMERSED INTERFACE METHOD

In this chapter, we will talk about the implementation of the new method. Even though
we have established a sound theory for our method, there are still a lot of details need to
be taken care of in the implementation. In the first section, we will talk about the spatial

discretization. In the second section, we will present the temporal discretization.

4.1. Spatial Discretization

4.1.1. MAC/Staggered grid

In the implementation, a staggered Marker-And-Cell(MAC) method is used for spatial
discretization. This method was developed by Francis Harlow and details can be found
in [67]. In the staggered mesh, the computational domain is uniformly divided into square
cells and the pressure is defined in each center of the cell, as shown in Figure 4.1. Velocity u
is defined at the center of vertical edges of the cell and velocity v is defined at the center of
horizontal edges of the cell. Even though it will be more complicated and takes more work to
code by using a MAC grid, compared with using a collocated grid, using a MAC grid can help
to improve the accuracy, can apply different boundary conditions easily, and it will be easier
to couple the velocity to solve the pressure Poisson equation. In the left graph of Figure 4.1,
the black disks where m — 1, m and m + 1 marked are vertices of the boundary, and the
white open circles are intersection points of grid line and object boundary. When solving
u, v and p, we cannot directly use the jump conditions at the vertices. The interpolation
of jump conditions from the vertices to the intersection points is necessary. With the jump
contributions on intersection points known, we can use the central finite difference schemes

with the incorporation.of jump conditions as we have discussed in chapter 2. In the 2D case,
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the finite difference schemes are shown as below

0z(")ij = ()H%]A_x()l_éj + ()i (4.1a)
b = DO (.
Opa()ij = (i = 22;? (i + Coa(*)iy (4.1c)
(s = T LUt ), (11d)

Az, Ay are spatial discretization steps, and ¢, ¢,, ¢z and ¢y, are jump 