
www.manaraa.com

THE IMMERSED INTERFACE METHOD

FOR FLOW AROUND NON-SMOOTH BOUNDARIES

AND ITS PARALLELIZATION

Approved by:

Dr. Sheng Xu

Associate Professor of Mathematics

Dr. Johannes Tausch

Professor of Mathematics

Dr. Barry Lee

Associate Professor of Mathematics

Dr. Weihua Geng

Assistant Professor of Mathematics

Dr. Paul Krueger

Professor of Mechanical Engineering

www.manaraa.com

www.manaraa.com

THE IMMERSED INTERFACE METHOD

FOR FLOW AROUND NON-SMOOTH BOUNDARIES

AND ITS PARALLELIZATION

A Dissertation Presented to the Graduate Faculty of the

Dedman College

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Applied Mathematics

by

Yang Liu

B.S., Applied Mathematics, University of Science and Technology Beijing
B.S., Applied Mathematics, University of Texas at Arlington
M.S., Applied Mathematics, Southern Methodist University

May 20, 2017

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10283304

10283304

2017

www.manaraa.com

Copyright (2017)

Yang Liu

All Rights Reserved

www.manaraa.com

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Sheng Xu for the

continuous support of my Ph.D study and related research, for his patience, motivation, and

immense knowledge. His guidance helped me in all the time of research and writing of this

thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Barry

Lee, Prof. Johannes Tausch, Prof. Paul Kruger and Prof. Weihua Geng, for their insightful

questions, comments and encouragement. I am very grateful to all the other faculty and

staff members from SMU department. Their endless instructions, advise, help and support

are all very important and valuable to my student life here. I would also like to thank the

US National Science Foundation for its financial support to my research work.

Last but not the least, I would like to thank my parents Yajun Liu and Xiaolei Zhao, my

beloved Hongni Wang and all my friends for supporting me throughout writing this thesis

and my life in general.

iv

www.manaraa.com

Liu, Yang B.S., Applied Mathematics, University of Science and Technology Beijing
B.S., Applied Mathematics, University of Texas at Arlington
M.S., Applied Mathematics, Southern Methodist University

The Immersed Interface Method

for Flow Around Non-smooth Boundaries

and Its Parallelization

Advisor: Dr. Sheng Xu

Doctor of Philosophy degree conferred May 20, 2017

Dissertation completed May 20, 2017

In the immersed interface method (IIM), the boundaries of objects in a fluid are treated

as immersed interfaces in the fluid. Singular forces are used to represent the effects of the

objects on the fluid, and jump conditions induced by the singular forces are incorporated

into numerical schemes to simulate the flow. Previously, the immersed interface method for

simulating smooth rigid objects with prescribed motion in 2D & 3D incompressible viscous

flows has been developed by Xu [72–74]. In this thesis, we extend the method for rigid

objects with non-smooth boundaries by computing necessary jump conditions using line

segment representation of 2D objects. We also present the parallelization strategy for the

development of a high-performance program for distributed-memory parallel computing with

Message Passing Interface(MPI). Different tests are performed, and numerical results and

comparisons are given to study the accuracy, efficiency and robustness of our method.

v

www.manaraa.com

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xiii

CHAPTER

1. INTRODUCTION . 1

1.1. Problem Statement . 1

1.2. Literature Review . 2

1.3. Immersed Interface Method. 4

1.4. Parallel/High-Performance Computing . 5

1.5. Outline . 8

2. GOVERNING EQUATIONS AND FINITE DIFFERENCE SCHEMES 9

2.1. Governing Equations . 9

2.2. Finite Difference Scheme . 10

3. FORMULATION OF JUMP CONDITIONS . 13

3.1. Jump Conditions for ~u . 15

3.1.1. Principle jump conditions . 15

3.1.2. First-order Cartesian jump conditions . 17

3.1.3. Second-order Cartesian jump conditions . 17

3.2. Jump Conditions for pressure p . 19

3.2.1. First-order Cartesian jump conditions . 19

3.2.2. Second-order Cartesian jump conditions . 20

3.2.3. Principle jump conditions . 21

3.3. Fluid Force Calculation . 24

4. IMPLEMENTATION OF THE IMMERSED INTERFACE METHOD 25

vi

www.manaraa.com

4.1. Spatial Discretization . 25

4.1.1. MAC/Staggered grid . 25

4.1.2. Object interface representation . 26

4.1.3. Pressure Poisson solver . 27

4.1.4. Boundary conditions . 30

4.2. Temporal discretization . 31

4.2.1. Runge-Kutta method . 32

4.2.2. CFL number . 33

4.3. Method Summary . 34

5. PARALLELIZATION OF THE IMMERSED INTERFACE METHOD 35

5.1. Introduction of Parallel Computing . 35

5.1.1. Domain decomposition . 35

5.1.2. Message Passing Interface(MPI) . 37

5.2. Data Structure . 38

5.2.1. Parameters . 38

5.2.2. Flow field variables . 38

5.2.3. Jump conditions . 39

5.2.4. Jump contributions . 40

5.3. Information Exchange/Communication . 40

5.3.1. Ghost layers of flow field . 40

5.3.2. Objects information . 42

5.3.3. Calculation of principle jump conditions for p . 50

5.3.4. Collection communication . 56

5.3.5. Parallel I/O . 57

5.4. Mesh Stretching . 58

5.4.1. Mesh stretching . 58

vii

www.manaraa.com

5.4.2. Finite difference schemes . 59

5.5. Pressure Solver . 60

5.5.1. Multigrid method . 60

5.5.2. Hypre library . 62

5.5.3. Compatibility condition . 64

5.6. Jump Contributions . 65

5.6.1. Jump contribution of pressure . 65

5.6.2. Jump contribution of interpolation . 67

6. NUMERICAL SIMULATIONS . 71

6.1. Poisson Solver With Jump Conditions . 72

6.2. Lid-driven Cavity Flow . 72

6.2.1. Validation . 73

6.2.2. Parallel speedup and efficiency . 74

6.2.3. Scalability Test . 77

6.3. Circular Couette Flow . 77

6.4. Flow Past Circular Cylinder . 79

6.4.1. Geometry of the computational domain . 79

6.4.2. Boundary conditions . 79

6.4.3. Re = 20, 40 . 80

6.4.4. Re = 100, 200 . 80

6.5. Flow Past Square Cylinder . 81

6.5.1. Numerical tests setup . 82

6.5.2. Boundary conditions . 82

6.5.3. Re < 100 . 83

6.5.4. Re = 100, 200 . 85

6.5.5. Asymmetry . 86

viii

www.manaraa.com

6.5.6. Parallel speedup and efficiency . 90

6.6. Flow Past Two Square Cylinders . 91

6.7. Flow Around A Hovering Flapper. 93

6.8. Flow Around Multiple Hovering Flappers . 95

6.8.1. Efficiency of around multiple hovering flappers . 96

6.8.2. Parallel speedup and efficiency . 98

6.8.3. Scalability tests . 100

6.9. Cylinders Rotating Along A Circle . 101

6.10. Flow Past Triangle Cylinder . 103

6.11. Flow Past SMU Mascot Peruna . 104

7. SUMMARY AND CONCLUSIONS . 112

BIBLIOGRAPHY . 115

ix

www.manaraa.com

LIST OF FIGURES

Figure Page

2.1 Geometric description of the immersed object. 10

2.2 Examples for generalized Taylor expansion and finite difference scheme 11

3.1 One-sided finite difference scheme . 16

3.2 Representation of 2D interface in line segment panels . 18

4.1 Velocity and pressure on a MAC grid . 26

5.1 Domain decomposition. Source: http://physics.drexel.edu/ . 37

5.2 Domain decomposition of flow field u . 42

5.3 Objects on domain . 50

5.4 Stretched mesh . 69

5.5 p = p(x(ξ)) with jumps on a, b, c, d . 70

5.6 g = g(ξ) with jumps at D . 70

6.1 Geometry of Poisson solver test . 73

6.2 Geometry of lid-driven cavity flow . 75

6.3 Stream function of lid-driven cavity flow . 76

6.4 Computational time for cavity flow with different number of processors 78

6.5 Cavity flow parallel speedup . 79

6.6 Cavity flow parallel efficiency and percentage of total time . 80

6.7 Geometry of circular Couette flow . 84

6.8 Geometry of flow past stationary circular/square/triangular cylinder 85

6.9 Streamfunction contours at Re = 20, serial . 85

6.10 Vorticity field at Re = 100 & 200, serial . 86

x

www.manaraa.com

6.11 Drag and lift coefficients evolution with time at Re = 100 & 200, serial 87

6.12 Streamfunction contours at Re = 1.5, 5, 20, 40, serial . 88

6.13 Fluid force evolution at Re = 100 & 200, B = 0.05, serial . 90

6.14 Vorticity field at Re = 100 & 200, serial . 90

6.15 Streamline function, parallel . 91

6.16 Error between mirrored p, rhsp, u and v with tol = 1× 10−12 92

6.17 Error between mirrored p, rhsp, u and v with tol = 1× 10−3 93

6.18 Parallel speedup and efficiency for flow past a square cylinder 95

6.19 Geometry of flow past two square cylinders . 96

6.20 Fluid force evolution for two square cylinders at Re = 100, G = 5, serial 96

6.21 Flow field for two square cylinders at Re = 100, G = 5, serial 97

6.22 Fluid force evolution for two square cylinders at Re = 200, G = 5, serial 97

6.23 Flow field for two square cylinders at Re = 200, G = 5, serial 98

6.24 Geometry of flow around a flapper . 98

6.25 Drag and lift coefficients for rounded plate, serial . 99

6.26 Drag and lift coefficients for rectangular plate, serial . 99

6.27 Drag and lift coefficients for rectangular plate, parallel . 100

6.28 Comparison of flow fields around a flapper at Re = 157 and t ≈ 10Tf . solid
line: current, dashed line: previous. Serial results. 100

6.29 Comparison of flow fields around a flapper at Re = 157 and t ≈ 10Tf . solid
line: rounded plate, dashed line: rectangular plate. Serial results. 101

6.30 Vorticity field of multiple rectangular plate flappers, serial . 102

6.31 Relative computational time for different number of flappers 103

6.32 Computational time of hovering flappers at different processors 104

6.33 Percentage of computational time for hovering flappers at different processors . 104

6.34 Parallel speedup & efficiency of hovering flappers at different processors 105

6.35 Geometry of 1024 hovering flappers . 107

xi

www.manaraa.com

6.36 Geometry of flow around multiple cylinders rotating around a center 108

6.37 Relative computational time for different number of objects 109

6.38 Drag coefficients vs. ratio with different Reynolds number . 110

6.39 Flow past Peruna from right to left at Re = 1000 . 111

xii

www.manaraa.com

LIST OF TABLES

Table Page

6.1 Poisson solver test with circular cylinder, 4 cores . 74

6.2 Poisson solver test with square cylinder, 4 cores . 74

6.3 Lid-driven cavity flow at Re = 100 . 75

6.4 Lid-driven cavity flow at Re = 1000 . 77

6.5 Cavity flow parallel speedup and efficiency . 81

6.6 Cavity flow percentage of time . 82

6.7 Scalability test for Cavity flow . 83

6.8 Circular Couette flow at Re = 10, uniform mesh, 4 cores . 83

6.9 Circular Couette flow at Re = 10, stretching mesh, 4 cores . 84

6.10 Flow characteristics of flow past a circular cylinder at Re = 20 & 40 86

6.11 Flow characteristics of flow past a circular cylinder at Re = 100 & 200 87

6.12 Flow characteristics of flow past a square cylinder at Re = 5, 10 & 40 89

6.13 Flow characteristics of flow past a square cylinder at Re = 100 91

6.14 Flow characteristics of flow past a square cylinder at Re = 40 and B = 0.05
with different tolerance . 94

6.15 Flow characteristics of flow past two tandem square cylinders at Re = 100,
G = 5 . 94

6.16 Relative computational time for different number of flappers(serial) 101

6.17 Relative computational time for different number of flappers(parallel) 102

6.18 Parallel speedup & efficiency of hovering flappers at different processors 106

6.19 Parallel speedup & efficiency of hovering flappers at different processors 106

6.20 Scalability test for different number of hovering flappers . 107

xiii

www.manaraa.com

6.21 1024 hovering flappers with different cores . 107

6.22 Test for checking HPC’s influence on computational time by running same
test three times . 108

6.23 Relative computational time for different number of objects 108

xiv

www.manaraa.com

This thesis is dedicated to my family.

www.manaraa.com

Chapter 1

INTRODUCTION

1.1. Problem Statement

In the field of computational fluid mechanics, one important topic is how to resolve

moving boundaries and their effects on fluid flow accurately and efficiently. For example,

biolocomotion is very popular in the past several decades and the study of insect flight

aerodynamics has attracted lots of researchers. When a butterfly flaps its wings, we would

like to know what is the velocity and pressure around the wings and the fluid force and

torque. Think about it further, if we design a wing by ourselves, how can we simulate the

aerodynamics of the flapping wings. If the wings have complex geometries, how can we

examine if it works as we expect. All the thoughts bring us to a big question that, can we

design a method, which is suitable to test aerodynamics of moving objects with complex

geometries, and the problem can be solved accurately and efficiently. Driven by the question

above, we started the study of immersed interface method for flow around objects with

non-smooth boundaries.

This work is difficult and challenging. Because the object could be moving or static, we

need to think about whether to use Lagrangian method to focus on the object or use Eulerian

method to focus on the space. For the objects in the flow field, we need develop a method to

couple the movement with the flow field, and think about how to handle the domain inside

and outside of the objects. In addition, the method should be able to handle objects with

different complex geometries and can solve the problem stably. Assume we put hundreds of

moving objects into the flow field, the method should be efficient to solve the problem and

the computational cost should not be increased dramatically with more objects. Besides,

the method should have the good capacity to be easily implemented into a high-performance

1

www.manaraa.com

program to speed up the problem solving process. For complicated physics problems with

a large computational domain, a serial program is not enough to handle all the work, but a

highly efficient parallel method is not easy to develop.

For the past decades, many numerical methods have been developed to address problems

in this area and they all have their advantages and disadvantages. We will give a brief review

in the next section.

1.2. Literature Review

In the Lagrangian methods, we will track the movement of objects as well as the physical

properties. The computational mesh will be regenerated with the movement of objects.

One of the most popular mesh generation method is called Chimera mesh or overset mesh.

The main idea is to decompose the complex geometry into a system of overlapping grids

and interpolation is used to exchange the boundary information. This method has high

quality under large displacements and efficient for high-order accurate methods. Details can

be found in [39, 45, 60]. However, the computational cost is large due to the regeneration

of grids for moving boundary problems. Most researchers would combine Lagrangian and

Eulerian methods to solve the problems involving the fluid motion.

One common approach to resolve the moving boundaries problem is based on Cartesian

grids. Objects will move in the fixed computational domain and the position will be calcu-

lated at each time step. Researchers have been working on developing new Cartesian grid

methods to reduce the computational cost while maintain the accuracy and efficiency. Among

the developed Cartesian grid methods, some can be applied to solve flow problems for mov-

ing objects with the prescribed motion. Examples of these methods include the immersed

boundary method [19, 25, 26, 43, 44, 48], sharp interface method [65, 80], immersed interface

method [29, 30, 34, 77], Lattice Boltzmann method [27], Russell and Wang’s method [50],

ghost cell methods [4,64], etc. In the sharp interface method, a mixed Eulerian−Lagrangian

framework is employed, which treats the immersed boundary as a sharp interface. Second-

order accurate finite-volume method is used to discretize the Navier-Stokes equations and a

2

www.manaraa.com

second-order accurate fractional-step scheme is used for time marching. Boundary motion

can be properly produced by translating each boundary particle with the prescribed velocity.

For the Lattice Boltzmann method, it can be simply considered as a numerical solver of the

Boltzmann equation. A regular Eulerian grid is used for the flow domain and a Lagrangian

grid is used to follow the moving objects in the flow field. The velocity field of the fluid and

moving objects is solved by adding a force density term into the Lattice Boltzmann equa-

tion. In Russell and Wang’s method, instead of solving the velocity and pressure directly,

they solve the flow problem using a streamfunction–vorticity formulation and represent the

embedded objects with discontinuities. In their method, they first solve the Poisson equation

for streamfunction with discontinuities at the boundary. Then they solve a homogeneous

inviscid problem using boundary method. Vorticity is distributed around object boundary to

satisfy no-slip condition, and the vorticity is integrated in time within the effects of singular

sources. For the ghost cell method, ghost cells are fictitious cells inside the object. The

grid cells can be separated by the object boundary and finite difference approach can no

longer be applied. Then ghost cells are needed and boundary conditions of the object can be

implicitly incorporated through the ghost cells. Ghost cells can be updated by extrapolating

values from the flow field and the boundary.

Among all the methods above, the immersed boundary method is most notable. The

immersed boundary method was first introduced by Peskin in 1972 [43] to simulate blood

flow in human heart. A detailed explanation can be found in [44]. The immersed boundary

method treats the boundary of an immersed object as a set of Lagrangian fluid particles. A

singular force is added to the Navier-Stokes equation and determined by fluid particles to

represent the effects of the object on the fluid. The force distribution is described as a Dirac

delta function. Because of the formulation of the Navier-Stokes equation, the immersed

boundary method has the advantage that it can handle multiple moving objects easily and

efficiently. A Cartesian grid method is used for fluid and Lagrangian grid used for the

immersed boundary. The Naiver-Stokes equation can be solved with the communication

between the fluid and immersed boundary. When the immersed boundary method was first

3

www.manaraa.com

introduced, some disadvantages of the initial implementation were exposed, and one of the

biggest is it only has first order accuracy. A lot of research have been done to improve the

immersed boundary method in the recent years.

1.3. Immersed Interface Method

Motivated by the goal to achieve second-order accuracy, LeVeque and Li introduced

the immersed interface method in 1994 [30, 31]. The immersed boundary method and im-

mersed interface method share the same formulation, and the biggest difference is that in the

immersed interface method the finite difference scheme is used to incorporate the jump con-

ditions caused by the Dirac delta function. If the necessary jump conditions are known, then

second-order or even higher order accuracy can be secured. The immersed interface method

was first introduced to solve elliptic equations [30] and Stokes equation [31]. Later Wieg-

mann and Bube extented the immersed interface method to nonlinear parabolic equations

and Poisson equations with piecewise smooth solutions [69,70]. In [29,34], the immersed in-

terface method was extented to solve 2D incompressible Navier-Stokes equations and in [40]

it was used to solve the 1D Schrödinger equation. Meanwhile, for the past decade the im-

mersed interface method was developed based on both finite difference method [77, 79] and

the finite element method [32,35] to provide large potential for implementation. In the pre-

vious work of Xu [78], he systematically derived jump conditions of all first-, second-, and

third-order derivatives of the velocity and the pressure by construction of singular force, as

well as the jump conditions of first- and second-order temporal derivatives of the velocity for

3D incompressible Navier-Stokes equations. With these jump conditions, he implemented

the immersed interface method to simulate 2D & 3D incompressible viscous flow with mov-

ing boundaries [77, 79]. His method is proved to be stable, accurate and efficient to handle

single or multiple smooth moving objects.

The shortcoming of Xu’s previous work is this method can only be applied to simu-

late flow around smooth objects, like a circular cylinder or a rounded plate. Previously,

cubic splines were used to parametrize the immersed interface, but the interface of object

4

www.manaraa.com

with complex/non-smooth boundaries cannot be represented in the same pattern. In order

to overcome this weakness, our goal here is to develop the immersed interface method for

incompressible viscous flow with complex/non-smooth boundaries in both stationary and

moving conditions, which can be resolved stably, accurately and efficiently. In our current

method, we use line segment panels to represent the interface instead of using cubic spline

for surface parametrization. Instead of expressing jump conditions through construction of

a singular force, here jump conditions are directly calculated based on the fluid field. We re-

derive the principle jump conditions and first- and second-order Cartesian jump conditions

for velocity and pressure, such that they can be applied to non-smooth objects. Besides,

the new developed method can be easily modified and implemented into a high-performance

parallel program. In this thesis there are sufficient details of method derivation, implemen-

tation and the design of the parallel program. Anyone who is interested in our method can

program and test it.

1.4. Parallel/High-Performance Computing

In the past, programs are written in the way that the instructions will be executed one by

one sequentially and can only be executed on one processor. We call this kind of program a

serial program. But with the fast development of software and hardware in the past decades,

the computers have much more power to handle heavy-duty computations. This has helped

the researchers from the scientific computing field to develop more powerful methods, and

CFD is a very good example. Nowadays, most of the numerical methods are developed based

on the idea of parallel computing. By doing this, a big problem can be split into many small

tasks and sent to different processors. Same instructions can be executed at the same time

on different processors and an overall control is used to manage the computation. Parallel

computing has the ability to solve very large problems which cannot be executed on only

one processor and can save computational time. Parallel computing is widely used in almost

all areas of science and engineering, in both academia and industry.

5

www.manaraa.com

Parallel computers are mainly designed in two ways, one computer with multiple cores

or multiple computers connected to each other using network connection. Based on the

structure of computing sources, the parallel program can be identified as a shared memory

program or distributed memory program. Shared memory programming is mainly for one

computer with multiple cores, and all cores can pull out information from the same memory.

OpenMP is one of the most popular application program interfaces(API) that supports it and

details can be found in [12]. In distributed memory programming, each processor will store

the information in local memory and exchange it with neighboring processors if necessary.

The Message Passing Interface Standard(MPI) from Argonne National Laboratory is mainly

designed for this purpose, as described in [1]:

The Message Passing Interface Standard (MPI) is a message passing library

standard based on the consensus of the MPI Forum, which has over 40 partici-

pating organizations, including vendors, researchers, software library developers,

and users. The goal of the Message Passing Interface is to establish a portable,

efficient, and flexible standard for message passing that will be widely used for

writing message passing programs. As such, MPI is the first standardized, ven-

dor independent, message passing library. The advantages of developing message

passing software using MPI closely match the design goals of portability, effi-

ciency, and flexibility. MPI is not an IEEE or ISO standard, but has in fact,

become the industry standard for writing message passing programs on HPC

platforms.

MPI and OpenMP have very good support for C++ and FORTRAN, and are widely used

in high-performance computing/scientific computing field. They can also be mixed to create

a hybrid MPI /OMP program. Due to time limits, the development of our parallel program

is only based on MPI.

Traditionally, parallel programming is mainly developed based on the structure of the cen-

tral processing units(CPU), but with the fast development of graphics processing units(GPU),

more and more researchers are moving to study the possibility of parallel programming on

6

www.manaraa.com

GPUs. CPUs and GPUs have different structures. Even though each core on a GPU is

much slower than a CPU and also the memory cache is much smaller, GPU still has its own

strength. Nowadays each CPU can only have no more than 100 cores, but GPUs could have

a few thousands cores on a single unit, which shows the potential of highly powerful comput-

ing capacity. Some APIs are developed to help people develop parallel programs on GPUs.

OpenMP supports GPU programming, and there are other popular APIs such as CUDA,

OpenCL and OpenACC. In the CFD area, some numerical methods have been developed

for parallel programming on GPUs. In [61, 62], Thibault used CUDA kernels to implement

the projection algorithm to solve the Navier-Stokes equations for incompressible fluid flow.

In [49], Rossinelli and Koumoutsakos implemented the vortex particle method for incom-

pressible flow simulations on GPUs. In [11], Castonguay presented a high-order compressible

viscous flow solver for mixed unstructured grids on multi-GPU. Some researchers are also

working on combining CPU and GPU programing together to solve flow problems [21,71].

Parallel programming has a high standard requirement for both hardware and software.

Regular personal computers are usually not able to handle high-performance programs. SMU

has its own high-performance facility, ManeFrame, open to all the faculties and students,

below are the technical details as of this writing:

• 1084 nodes with 24 GB of RAM

• 20 nodes with 192 GB of RAM

• 1.2 PB high performance parallel Lustre file system

• All nodes have 8-core Intel R© Xeon R© CPU X5560 @ 2.80GHz 107 processors

• All nodes are connected by a 20Gbps DDR InfiniBand connection to the core backbone

InfiniBand network

• Scientific Linux 6 (64 bit) operating system

• SLURM resource scheduler

All the parallel simulations in this thesis are conducted on ManeFrame.

7

www.manaraa.com

1.5. Outline

This thesis is organized as follows. In chapter 2, we present the mathematical formulation

of the governing equations and the modified finite difference schemes with jump conditions

in the immersed interface method. In chapter 3, the new method of derivation for principle

and Cartesian jump conditions will be explained in the 2D case. In chapter 4, we will

talk about implementation of our current method, including the spatial discretization and

temporal discretization. In chapter 5, we will present the parallelization of our method,

including domain decomposition, data structure, communication and other improvements.

In chapter 6, different flow problems are tested to study the stability, accuracy, efficiency

and robustness of our current method. In chapter 7, conclusions will be given.

8

www.manaraa.com

Chapter 2

GOVERNING EQUATIONS AND FINITE DIFFERENCE SCHEMES

In this chapter, we present the model of the immersed interface method for flow with

non-smooth boundaries. In the first section, we will present the Governing equations used

in the immersed interface method. In the second section, we will present the finite difference

method used for the treatment of the computational domain.

2.1. Governing Equations

In the immersed interface method, we treat an immersed object boundary as an immersed

interface, and the effect of the object on the fluids is represented as the singular force.

Consider the incompressible viscous flow with an object, the non-dimensional 2D Navier-

Stokes equations subject to singular force are given as below,

∂~u

∂t
+∇ · (~u~u) = −∇p+

1

Re
∆~u+ ~q +

∫
Γ

~f
(
~X, t
)
δ
(
~x− ~X

)
dl (2.1)

∇ · ~u = 0 (2.2)

where ~u = (u, v) is the velocity, p is the pressure. Re is the Reynolds number, Γ is the

object boundary immersed in the fluid. ~q = (qx, qy) is the finite body force to enforce the

rigid motion of the fluid enclosed by the object boundary. ~f is the density of the singular

force, δ (·) is the 2D Dirac δ function, ~F =
∫
Γ
~f
(
~X, t
)
δ
(
~x− ~X

)
dl is the singular force

representing the effect of object on the fluid. ~x = (x, y) is the Cartesian coordinates, and

~X = (X,Y) is the Cartesian coordinates of boundary vertices. Multiple objects can be

represented in the similar manner.

In our current method, the object has rigid boundaries and has the potential to be

extended to deforming objects in the future. The objects can be any kind of shape, with

smooth or non-smooth boundaries. The objects are either static or in prescribed motion, so

9

www.manaraa.com

the position and relative movement of the object can be a function of time, which is

~X = ~X(t) = (X(t), Y (t)) (2.3a)

X(t) = xc(t) +X0 ∗ cos(θ(t))− Y0 ∗ sin(θ(t)) (2.3b)

Y (t) = yc(t) +X0 ∗ cos(θ(t)) + Y0 ∗ sin(θ(t)) (2.3c)

(xc(t), yc(t)) is the Cartesian coordinates of a fixed reference point with respect to the bound-

ary, (X0, Y0) is the initial coordinates of vertices, and θ(t) is the rotation angle of the object.

Equations (2.1) and (2.2) are defined on the entire domain Ω as shown in Figure 2.1, where

Ω+ is the domain of the fluid and Ω− is the domain inside the object. The computational

domain is fixed and will not change with the time. ~n is the unit normal vector on the vertices

and ~τ is the unit tangential vector, where ~τ = (τx, τy) = (−ny, nx).

x

y

B

Ω+

Ω−

Γ

Γ+

Γ−

~n

~τ

~X

b

Figure 2.1: Geometric description of the immersed object.

2.2. Finite Difference Scheme

On the boundary, jump conditions are induced by the singular force and discontinuous

body force. Different from the immersed boundary method which approximates the Dirac

10

www.manaraa.com

δ function by using discretized smooth functions, the immersed interface method directly

modifies a finite difference scheme to incorporate the jump conditions. Previously from the

work of Xu and Wang [78], they presented the generalized Taylor expansion for a piecewise

smooth function, which is expressed as below,

g
(
z−i+1

)
=

∞∑
n=0

g(n)(z+0)

n!
(zi+1 − z0)

n +
i∑

l=1

∞∑
n=0

[
g(n)(zl)

]
n!

(zi+1 − zl)
n (2.4)

where g(z) is a piecewise smooth function as shown in Figure 2.2.
[
g(n)(zl)

]
denotes the jump

conditions along the z direction,
[
g(n)(zl)

]
= g(n)(z+l)−g(n)(z−l). The proof for equation (2.4)

was presented in [78]. Based on this, second order central finite difference schemes are given

in equations (2.5a) and (2.5b). Interpolation scheme with incorporation of jump conditions

is also developed and given in equation (2.6), where g(z) is discontinuous at z = ξ and z = η

as shown in Figure 2.2.

z

g(z)

z0 z1 z2 z3
zi−1 zi zi+1

+

-

+

-

+

-

+

-

+ -
+

-

h h

b b b| |

zi−1 zi zi+1ξ η

Figure 2.2: Examples for generalized Taylor expansion and finite difference scheme

dg
(
z−i
)

dz
=

g
(
z−i+1

)
− g

(
z+i−1

)
2h

+O
(
h2
)

+
1

2h

(
2∑

n=0

− [gn(ξ)]

n!
(zi−1 − ξ)n −

2∑
n=0

− [gn(η)]

n!
(zi+1 − η)n

) (2.5a)

d2g
(
z−i
)

dz2
=

g
(
z−i+1

)
− 2g(zi) + g

(
z+i−1

)
h2

+O
(
h2
)

+
1

h2

(
3∑

n=0

− [gn (ξ)]

n!
(zi−1 − ξ)n −

3∑
n=0

− [gn (η)]

n!
(zi+1 − η)n

) (2.5b)

11

www.manaraa.com

g (zi) =
zi−1 − zi+1

2
+O(h2) +

1

2

[
∂g(ξ)

∂z

]
(zi−1 − ξ)− 1

2

[
∂g(η)

∂z

]
(zi+1 − η) (2.6)

Equation (2.5a) is the first-order derivative of function g(z) with incorporation of jump

conditions and equation (2.5b) is the second-order derivative of the function g(z). The inter-

polation equation (2.6) also gives second-order accuracy. The development of the above finite

difference schemes and interpolation scheme is very important because the whole method is

developed based on the finite difference method and how to calculate and use these jump

conditions is the key to the success of our method.

12

www.manaraa.com

Chapter 3

FORMULATION OF JUMP CONDITIONS

Previously from the work of Xu and Wang [78], the formulation of necessary jump con-

ditions for the immersed interface method in three-dimensional flow simulation has been

systematically derived. The formulation of the jump conditions has been applied in the 2D

immersed interface method in [72, 77] and the 3D immersed interface method in [79]. The

method is proved to be stable, accurate and efficient. But, since cubic splines were used

to parametrize the object boundary in 2D, these jump conditions can only be applied to

objects with smooth boundaries, like circular cylinder or rounded plate. When it comes

to non-smooth objects like square cylinder or rectangular wing, the previous method is no

longer valid. Inspired by this, we have developed new formulation of the jump conditions

which can be applied to non-smooth objects.

In our current method, there are two main types of jump conditions are needed: Principle

jump conditions and Cartesian jump conditions. Principle jump conditions of velocity and

pressure across the closed surface, and along their normal directions. Cartesian jump condi-

tions are along the x and y directions of the Cartesian coordinates, and calculated using the

principle jump conditions. Below are the jump conditions we need in the immersed interface

method,

• Principle jump conditions

[~u],
[
∂~u
∂n

]
, [∆~u], [p],

[
∂p
∂n

]
, [∆p]

• Cartesian jump conditions[
∂~u
∂x

]
,
[
∂~u
∂y

]
,
[
∂2~u
∂x2

]
,
[
∂2~u
∂y2

]
,
[

∂2~u
∂x∂y

]
[
∂p
∂x

]
,
[
∂p
∂y

]
,
[
∂2p
∂x2

]
,
[
∂2p
∂y2

]
,
[

∂2p
∂x∂y

]

13

www.manaraa.com

In the previous approach [72,77–79], jump conditions are expressed in terms of singular force.

In the 2D case, the formulation for singular force is shown as below,

fn =

∫ (
1

Re

∂ω

∂n
|Γ++ [bτ]

)
Jdα (3.1a)

fτ = − 1

Re

(
ω|Γ+−2θ̇

)
(3.1b)

fn is the normal singular force and fτ is the tangential singular force. ω is the vorticity, bτ is

the tangential body force, α is the Lagrangian parameter and J = ||∂ ~X
∂α

||2. After fn and fτ

known, the jump conditions can be expressed using the singular force. Example of principle

jump conditions of pressure is shown below

[p] = fn (3.2a)[
∂p

∂n

]
=

∂fτ
∂τ

+ [bn] (3.2b)

Different from the previous work, we no longer need to calculate the singular force to

express the jump conditions. Instead, the jump conditions are directly computed based on

the velocity and pressure field. In the work of Xu and Pearson [76], they presented a method

to compute the necessary Cartesian jump conditions from given principle jump conditions

using a triangular mesh representation of a 3D interface. The triangular mesh representation

is simpler and robuster than interface parametrization for complex or non-smooth interface.

We have modified the method for computing Cartesian jump conditions using a line segment

panel representation of a 2D interface. Here we focus on the development of the method for

computing jump conditions.

In the first section, we will present the derivation of principle and Cartesian jump con-

ditions for velocity ~u. In the second section, we will present the derivation of principle and

Cartesian jump conditions for pressure p. In the third section, we will present the derivation

of fluid force calculation.

14

www.manaraa.com

3.1. Jump Conditions for ~u

For the velocity ~u, we will first show the derivation of principle jump conditions then the

Cartesian jump conditions, as Cartesian jump conditions are derived from its principle jump

conditions.

3.1.1. Principle jump conditions

The principle jump conditions for ~u are [~u],
[
∂~u
∂n

]
and [∆~u].

• [~u]

The principle jump conditions of velocity is [~u] = 0, as ~u is finite and continuous at

the interface.

•
[
∂~u
∂n

]
For the principle jump conditions of the derivative ~u along normal direction, it can be

expressed as [
∂~u

∂n

]
=

∂~u

∂n
|Γ+−∂~u

∂n
|Γ− (3.3)

As for the 3D case shown in [73], ∂~u
∂n
|Γ−= ~Ω × ~n, which is the formula for the rigid

motion of an object. When it comes to 2D,

∂~u

∂n
|Γ−= θ̇ · ~τ , (3.4)

where θ̇ is the angular velocity of rotation for the objects in the Cartesian system and

is changing with time, θ̇ = θ̇(t).

To calculate ∂~u
∂n
|Γ+ , we applied one-sided finite difference scheme along the normal

direction ~n as shown in Figure 3.1. It can be expressed as

∂~u

∂n
|Γ+=

−3~u(S0) + 4~u(S1)− ~u(S2)

2δn
+O(δn2) (3.5)

where δn is the distance between two adjacent points along normal direction ~n and

δn ≥
√

δx2 + δy2 to avoid the two adjacent points are in the same grid cell. For

15

www.manaraa.com

velocity ~u at vertex S0 on the boundary, it is the prescribed velocity of the boundary,

u(S0) = ẋc − θ̇ · (Y − yc) (3.6a)

v(S0) = ẏc + θ̇ · (X − xc) (3.6b)

(xc, yc) is the Cartesian coordinates of a fixed reference point with respect to the

boundary, (ẋc, ẏc) is the velocity of the reference point movement, and (X,Y) is the

current coordinates of the vertex S0. The velocity at points S1 and S2 are interpolated

from four surrounding points from the Cartesian grid cell. For example, velocity at

the point S2 can be interpolated from points I, II, III, IV . If higher order accuracy

for ∂~u
∂n
|Γ+ is required, we can add more points on normal direction to achieve that.

δx

δy

δn

δn

Γ

IV III

I II

S2

S1

S0

Ω+

Ω−

τ⃗

n⃗

Γ−

Γ+

Figure 3.1: One-sided finite difference scheme

• [∆~u]

For [∆~u], it can be expressed using natural coordinates, which is given below,

[∆~u] =

[
∂2~u

∂n2

]
+ κ

[
∂~u

∂n

]
(3.7)

where κ is the curvature of the object boundary,
[
∂2~u
∂n2

]
= ∂2~u

∂n2 |Γ+−∂2~u
∂n2 |Γ− and ∂2~u

∂n2 |Γ−= 0.

16

www.manaraa.com

For ∂2~u
∂n2 |Γ+ , similarly we can use one-sided finite difference scheme, which gives

∂2~u

∂n2
|Γ+=

2~u (S0)− 5~u (S1) + 4~u (S2)− ~u (S3)

(δn)2
+O(δ2n) (3.8)

∂2~u
∂n2 |Γ+ and ∂~u

∂n
|Γ+ now are second order accurate. With the above derivations, we can

achieve

[∆~u] =
∂2~u

∂n2
|++κ

[
∂~u

∂n

]
(3.9)

which can be easy to calculate with information already known.

3.1.2. First-order Cartesian jump conditions

For the first-order Cartesian jump conditions, we need to calculate
[
∂~u
∂x

]
and

[
∂~u
∂y

]
. As

we know [~u] = 0,
[
∂~u
∂τ

]
= 0, we can come to the two equations below[

∂~u

∂τ

]
=

[
∂~u

∂x

]
· τx +

[
∂~u

∂y

]
· τy (3.10a)

[
∂~u

∂n

]
=

[
∂~u

∂x

]
· nx +

[
∂~u

∂y

]
· ny (3.10b)

such that the following linear system can be built asτx τy

nx ny

[
∂~u
∂x

]
[
∂~u
∂y

]
 =

 0[
∂~u
∂n

]

Now we have the expression for the first-order Cartesian jump conditions[
∂~u

∂x

]
=

−τy
τx · ny − τy · nx

[
∂~u

∂n

]
(3.11a)

[
∂~u

∂y

]
=

τx
τx · ny − τy · nx

[
∂~u

∂n

]
(3.11b)

3.1.3. Second-order Cartesian jump conditions

For the second-order Cartesian jump conditions, we need to calculate
[
∂2~u
∂x2

]
,
[
∂2~u
∂y2

]
and[

∂2~u
∂x∂y

]
, and they are not as straightforward to calculate as the first-order Cartesian jump

17

www.manaraa.com

conditions. Assume on any line segment panel with end points A and B as shown in Figure

3.2, we have

∂

∂τ

[
∂~u

∂x

]
A

≈ 1

|AB|

([
∂~u

∂x

]
B

−
[
∂~u

∂x

]
A

)
+O(|AB|),

and ∂
∂τ

[
∂~u
∂y

]
can be approximated similarly. We can derive another linear system for second-

order Cartesian jump conditions based on the equations below

[∆~u] =

[
∂2~u

∂x2

]
+

[
∂2~u

∂y2

]
(3.12a)

∂

∂τ

[
∂~u

∂x

]
=

[
∂2~u

∂x2

]
· τx +

[
∂2~u

∂x∂y

]
· τy (3.12b)

∂

∂τ

[
∂~u

∂y

]
=

[
∂2~u

∂x∂y

]
· τx +

[
∂2~u

∂y2

]
· τy (3.12c)

~n

~τ1 ~τ2
A

B

C

D

E

F

M1 M2

b b

Figure 3.2: Representation of 2D interface in line segment panels

The system can be built as
1 0 1

τx τy 0

0 τx τy

[
∂2~u
∂x2

]
[

∂2~u
∂x∂y

]
[
∂2~u
∂y2

]

 =

[∆~u]

∂
∂τ

[
∂~u
∂x

]
∂
∂τ

[
∂~u
∂y

]

18

www.manaraa.com

Based on this linear system we can derive[
∂2~u

∂x2

]
=

1

τ 2x + τ 2y

[
τx

∂

∂τ

[
∂~u

∂x

]
− τy

∂

∂τ

[
∂~u

∂y

]
+ τ 2y [∆~u]

]
(3.13a)

[
∂2~u

∂x∂y

]
=

1

τ 2x + τ 2y

[
τy

∂

∂τ

[
∂~u

∂x

]
+ τx

∂

∂τ

[
∂~u

∂y

]
− τxτy [∆~u]

]
(3.13b)[

∂2~u

∂y2

]
=

1

τ 2x + τ 2y

[
τy

∂

∂τ

[
∂~u

∂y

]
− τx

∂

∂τ

[
∂~u

∂x

]
+ τ 2x [∆~u]

]
(3.13c)

Now we have all the necessary formulas for principle and Cartesian jump conditions of

velocity ~u, and they can be easily coded into program.

3.2. Jump Conditions for pressure p

In this section, we will first show how to derive the Cartesian jump conditions of pressure

derivatives, then we will present how to derive principle jump conditions.

3.2.1. First-order Cartesian jump conditions

For first-order Cartesian jump conditions
[
∂p
∂x

]
and

[
∂p
∂y

]
, we can calculate [∇p]. As we

know, ∇p term is in the Navier-Stokes equation,

∂~u

∂t
+∇ · (~u~u) = −∇p+

1

Re
∆~u+ ~q +

∫
Γ

~f
(
~X, t
)
δ
(
~x− ~X

)
dl

Different from [76], where they compute [∇p] by building a matrix problem, here we directly

take jump conditions of the Navier-Stokes equations with the information already known as

below,

[~u] = 0[
D~u

Dt

]
=

[
∂~u

∂t

]
+ [∇ · (~u~u)] = 0

[
~F
]
=

[∫
Γ

~f
(
~X, t
)
δ
(
~x− ~X

)
dl

]
= 0

Then the Navier-Stokes equation can be reduced to

[∇p] =
1

Re
[∆~u] + [~q] (3.15)

19

www.manaraa.com

where [∇p] is the first-order Cartesian jump condition, [∆~u] is known from the previous

section, ~q is piecewise defined and has jump conditions across the boundary [73]. As for

body force ~q, inside the boundary,

~q|Γ−= θ̈ ·
(
~X − ~xc

)
(3.16)

where θ̈ is the angular acceleration of object rotation. Outside boundary, ~q|Γ+= 0. Thus the

jump condition of [~q] is

[~q] = −θ̈ ·
(
~X − ~xc

)
(3.17)

Now we have the first-order Cartesian jump conditions as below[
∂p

∂x

]
=

1

Re
[∆u]− θ̈ · (X − xc) (3.18a)

[
∂p

∂y

]
=

1

Re
[∆v]− θ̈ · (Y − yc) (3.18b)

3.2.2. Second-order Cartesian jump conditions

Similar as second-order Cartesian jump conditions for ~u, we use the same strategy to

calculate
[
∂2p
∂x2

]
,
[
∂2p
∂y2

]
and

[
∂2p
∂x∂y

]
. On panel AB, since [∇p]A and [∇p]B are already known,

we can derive

∂

∂τ
[∇p]A ≈ [∇p]B − [∇p]A

|AB|
+O(|AB|) (3.19)

Build the linear system, we have
1 0 1

τx τy 0

0 τx τy

[
∂2p
∂x2

]
[

∂2p
∂x∂y

]
[
∂2p
∂y2

]

 =

[∆p]

∂
∂τ

[
∂p
∂x

]
∂
∂τ

[
∂p
∂y

]

20

www.manaraa.com

The second-order Cartesian jump conditions for p can be derived as below[
∂2p

∂x2

]
=

1

τ 2x + τ 2y

[
τ
∂

∂τ

[
∂p

∂x

]
− τy

∂

∂τ

[
∂p

∂y

]
+ τ 2y [∆p]

]
(3.20a)[

∂2p

∂x∂y

]
=

1

τ 2x + τ 2y

[
τy

∂

∂τ

[
∂p

∂x

]
+ τx

∂

∂τ

[
∂p

∂y

]
− τxτy [∆p]

]
(3.20b)[

∂2p

∂y2

]
=

1

τ 2x + τ 2y

[
τy

∂

∂τ

[
∂p

∂y

]
− τx

∂

∂τ

[
∂p

∂x

]
+ τ 2x [∆p]

]
(3.20c)

3.2.3. Principle jump conditions

For principle jump conditions of pressure p, we need to calculate [p],
[
∂p
∂n

]
and [∆p].

•
[
∂p
∂n

]
Since the first-order Cartesian jump condition is known, we have[

∂p

∂n

]
= [∇p] · ~n (3.21)

• [∆p]

By taking divergence of Navier-Stokes equation (2.1), we have the pressure Poisson

equation

∆p = sp +∇ ·
(
~q + ~F

)
(3.22)

where

sp = −
(
∂D

∂t
+∇ · (2~uD)− 1

Re
∆D

)
+ 2

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
D = ∇ · ~u

The divergence free condition is better enforced here by including the terms with D.

By taking jump conditions of equation (3.22), we have

[∆p] = 2

[
∂u

∂x

∂v

∂y

]
− 2

[
∂u

∂y

∂v

∂x

]
(3.24)

• [p]

For principle jump condition [p], unlike the other principle jump conditions, it cannot

be directly computed locally. Here we are using a different strategy. Since the first-

order Cartesian jump condition [∇p] is already known, then at any vertex on boundary,

21

www.manaraa.com

we have [
∂p

∂τ1

]
= [∇p] · ~τ1 (3.25a)[

∂p

∂τ2

]
= [∇p] · ~τ2 (3.25b)

For example, on panel AB and AF as shown in Figure 3.2, Simpson’s rule can be

applied to achieve the equations below∫ B

A

[
∂p

∂τ1

]
dl = [p]B − [p]A ≈ |AB|

6

([
∂p

∂τ1

]
A

+ 4

[
∂p

∂τ1

]
M1

+

[
∂p

∂τ1

]
B

)
(3.26a)

∫ F

A

[
∂p

∂τ2

]
dl = [p]F − [p]A ≈ |AF |

6

([
∂p

∂τ2

]
A

+ 4

[
∂p

∂τ2

]
M2

+

[
∂p

∂τ2

]
F

)
(3.26b)

where l is the length parameter along a line segment, M1 is the center of panel AB

and M2 is the center of panel AF .
[

∂p
∂τ1

]
M1

and
[

∂p
∂τ2

]
M2

can be computed using the

same strategy as we presented in previous sections. By adding equations (3.26a) and

(3.26b) together, we have

[p]B + [p]F − 2 [p]A = rhsA (3.27)

where

rhsA =
|AB|
6

([
∂p

∂τ1

]
A

+ 4

[
∂p

∂τ1

]
M1

+

[
∂p

∂τ1

]
B

)

+
|AF |
6

([
∂p

∂τ2

]
A

+ 4

[
∂p

∂τ2

]
M2

+

[
∂p

∂τ2

]
F

)

By repeating using the Simpson’s rule for all vertices on the boundary, there will be

22

www.manaraa.com

enough information to build the Topelitz matrix problem below:

−2 1 0 . . . 0 1

1 −2 1 . . . 0 0

0 1 −2 . . . 0 0

...
...

...
. . .

...
...

0 0 . . . 1 −2 1

1 0 . . . 0 1 −2

[p]A

[p]B

...

[p]F

=

rhsA

rhsB

...

rhsF

(3.28)

Notice that this matrix problem is singular and the solution is not unique. However,

we are solving it for principle jump conditions of pressure p, that means

[p] = p|Γ+−p|Γ− (3.29)

Inside the boundary, we have an analytical solution for pressure p|Γ− of motion for

rigid objects,

p|Γ−= −d2xc

dt2
X − d2yc

dt2
Y +

1

2
(θ̇)2

(
(X − xc)

2 + (Y − yc)
2)+ pc (3.30)

where pc is an arbitrary constant. Then for the principle jump condition [p], it is

subject to an arbitrary constant too. In this way, we can safely assume that at point

F , [p]F = 0. Apply this result to matrix problem (3.28), we will have

−2 1 . . . 0

1 −2 . . . 0

...
...

. . .
...

0 . . . 1 −2

[p]A

[p]B

...

[p]E

=

rhsA

rhsB

...

rhsE

(3.31)

Now this matrix problem is reduced to non-singular and can be solved easily by Gaus-

sian elimination or other classical methods.

23

www.manaraa.com

3.3. Fluid Force Calculation

As we know drag and lift coefficients are two important data for us to observe the behavior

of any flow with objects. The previous approach for computing fluid force is based on singular

force [77,79], which cannot be applied here in our new method. In general, the fluid force ~G

applied by a fluid to an object can be calculated by [79]

~G =

∫
Γ

(
−p|Γ+·~n+

1

Re

(
∂~u

∂n

)
|Γ+

)
dl (3.32)

We can find p|Γ+ easily by one-sided extrapolation. For
(
∂~u
∂n

)
|Γ+, it can be computed by

∂~u

∂n
|Γ+=

[
∂~u

∂n

]
Γ

+
∂~u

∂n
|Γ− (3.33)

where [
∂~u

∂n

]
=

[
∂~u

∂x

]
· nx +

[
∂~u

∂y

]
· ny (3.34a)

∂~u

∂n
|Γ−= θ̇ · τ (3.34b)[

∂~u
∂x

]
and

[
∂~u
∂y

]
are already known as Cartesian jump conditions. Here l is the length pa-

rameter along the boundary Γ, then finally we can sum over the whole boundary using the

Trapezoidal rule to find ~G.

24

www.manaraa.com

Chapter 4

IMPLEMENTATION OF THE IMMERSED INTERFACE METHOD

In this chapter, we will talk about the implementation of the new method. Even though

we have established a sound theory for our method, there are still a lot of details need to

be taken care of in the implementation. In the first section, we will talk about the spatial

discretization. In the second section, we will present the temporal discretization.

4.1. Spatial Discretization

4.1.1. MAC/Staggered grid

In the implementation, a staggered Marker-And-Cell(MAC) method is used for spatial

discretization. This method was developed by Francis Harlow and details can be found

in [67]. In the staggered mesh, the computational domain is uniformly divided into square

cells and the pressure is defined in each center of the cell, as shown in Figure 4.1. Velocity u

is defined at the center of vertical edges of the cell and velocity v is defined at the center of

horizontal edges of the cell. Even though it will be more complicated and takes more work to

code by using a MAC grid, compared with using a collocated grid, using a MAC grid can help

to improve the accuracy, can apply different boundary conditions easily, and it will be easier

to couple the velocity to solve the pressure Poisson equation. In the left graph of Figure 4.1,

the black disks where m − 1, m and m + 1 marked are vertices of the boundary, and the

white open circles are intersection points of grid line and object boundary. When solving

u, v and p, we cannot directly use the jump conditions at the vertices. The interpolation

of jump conditions from the vertices to the intersection points is necessary. With the jump

contributions on intersection points known, we can use the central finite difference schemes

with the incorporation of jump conditions as we have discussed in chapter 2. In the 2D case,

25

www.manaraa.com

the finite difference schemes are shown as below

δx(·)i,j =
(·)i+ 1

2
,j − (·)i− 1

2
,j

∆x
+ cx(·)i,j (4.1a)

δy(·)i,j =
(·)i,j+ 1

2
− (·)i,j− 1

2

∆y
+ cy(·)i,j (4.1b)

δxx(·)i,j =
(·)i+1,j − 2(·)i,j + (·)i−1,j

∆x2
+ cxx(·)i,j (4.1c)

δyy(·)i,j =
(·)i,j+1 − 2(·)i,j + (·)i,j−1

∆y2
+ cyy(·)i,j (4.1d)

∆x, ∆y are spatial discretization steps, and cx, cy, cxx and cyy are jump contributions

calculated from the jump conditions of the intersection points. If the grid line does not cross

any boundary or panels of the object, then the jump contributions will be zero and a scheme

will be a regular central finite difference scheme.

δx

δy

v

u

y

p

(i+ 1

2
, j)(i, j)

m-1

m

m+1

x

(i, j + 1

2
)

(i− 1

2
, j)

u

(i, j − 1

2
)

v

Figure 4.1: Velocity and pressure on a MAC grid

4.1.2. Object interface representation

As we mentioned earlier, currently we are using line segment panels to represent the

interface of the objects. In the previous work of Xu and other researchers [33,77,79], surface

26

www.manaraa.com

parametrization was used to form the object interface and periodic cubic spline was used to

calculate the Lagrangian point coordinates. Since now we are going to solve problems for

objects with complex or non-smooth boundaries, the previous method is no longer suitable.

In our method, the information of the normal vector ~n and tangential vector ~τ are frequently

used. Under the new representation of the interface, we simply compute ~τ and ~n based on

the coordinates of vertices by the equations below

~τ = (τx, τy) =
∆ ~X

||∆ ~X||2
, (4.2a)

~n = (nx, ny) = (τy,−τx) . (4.2b)

where ~X = (X,Y) is the vertex of the object interface and normal vector ~n is computed by

rotation of tangential vector ~τ . Then in implementation we have

τx(m) =
Xm+1 −Xm

γ
(4.3a)

τy(m) =
Ym+1 − Ym

γ
(4.3b)

γ =

√
(Xm+1 −Xm)

2 + (Ym+1 − Ym)
2 (4.3c)

nx(m) = −τx(m) (4.3d)

ny(m) = τy(m) (4.3e)

where m is the index of vertices. In this way, the boundary vertices can be set up based

on the shape of objects. The vertices don’t need to be equally distributed and we can use

as many vertices as we want. The program has better robustness since it only needs to

import vertices and curvature data, which can be setup using other software easily. In the

calculation of ~τ , we will only do it in a counter-clockwise direction. When we calculate jump

conditions, we actually calculate ~n in both the clockwise and counter-clockwise directions,

and use the different ~n to compute jump conditions at the same vertex twice, then take the

average to improve the accuracy and symmetry.

27

www.manaraa.com

4.1.3. Pressure Poisson solver

Taking the divergence of the Navier-Stokes equation (2.1), we have the pressure Poisson

equation as below

∆p = −
(
∂D

∂t
+∇ · (2~uD)− 1

Re
∆D

)
+ 2

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
+∇ ·

(
~q + ~F

)
(4.4)

where D = ∇ · ~u. As we are using finite difference method, the pressure Poisson equation

can be discretized as

(4p)i,j =
pi−1,j − 2pij + pi+1,j

δx2
+

pi,j−1 − 2pi,j + pi,j+1

δy2
+ cij (4.5)

where pij is the pressure at the center grid point (i, j), and cij is the jump contribution due

to the incorporation of necessary jump conditions. Let L denote the Laplacian operator,

f denote the vector formed by the discrete right hand side of equation (4.4), c denote the

vector for the jump contribution, then

Lp+ c = f (4.6)

We have developed two different serial solvers to solve the pressure Poisson equation, which

are a FFT solver and a Helmholtz iterative solver. We will describe our parallel solver later

in the next chapter.

• FFT Solver

In the previous work, the principle jump conditions of pressure p are assumed known,

as we presented in the second chapter. Then the jump contribution c is independent of

p. In this way, the FFT solver can be used to solve the pressure Poisson problem easily.

FFT stands for the fast Fourier transformation and this algorithm is very powerful at

reducing computational time.

• Helmholtz Iterative Solver

Even though the FFT solver is a very powerful tool, it may have trouble when c is

dependent on p. In other words, principle jump conditions cannot be derived in a

simple and straightforward manner, for example in the two fluid problem the density

28

www.manaraa.com

is discontinuous and [p] cannot be calculated. In order to conquer this issue, we have

developed the Helmholtz iterative solver. [p] can be calculated by knowing p|Γ+ and

p|Γ− . There exists an analytical solution for p|Γ− with an arbitrary constant, and p|Γ+

can be calculated using one-sided extrapolation. Then we can find that the jump

contribution c is linearly dependent on p, and it can be written as c = Cp+ c0. Then

equation (4.6) becomes

Lp+ Cp = f − c0 (4.7)

Now let’s introduce the pseudo-time,

∂p

∂t
= Lp+

(
Cp+ c0

)
− f (4.8)

As long as
∂p

∂t
is 0, it will reach a steady solution, which is independent of the initial

condition. Now we can introduce θ method at the same time and results in the following

form

γ
(
pn+1 − pn

)
= θLpn+1 + (1− θ)Lpn +

(
Cpn + c0

)
− f (4.9)

where γ is the reciprocal of the pseudo-time step ∆t, and pn is the grid pressure at the

time n∆t. It can be rearranged as

(θL− γI) pn+1 = − ((1− θ)L+ C + γI) pn − c0 + f (4.10)

In implementation, θ = 1, then

(L− γI) pn+1 =
(
Cpn + c0

)
+ f − γpn (4.11)

By solving the above equation iteratively, p will finally reach to a steady point and

then we have solved the problem. One thing to point out here is, because it is an

iterative solver, the computational time will increase and it is much slower than using

FFT solver. So if the principle jump condition is known, the FFT solver will be a

better choice.

29

www.manaraa.com

4.1.4. Boundary conditions

There are mainly three different types of boundary conditions used in our method for the

far field boundaries of the computational domain, they are periodic boundary conditions,

Dirichlet boundary conditions and Neumann boundary conditions.

• Periodic boundary condition

Periodic boundary conditions are commonly seen in models with repeating nature in

physical geometry and expected flow pattern.

At west and east of the boundary: ~u0,j = ~unx−1,j, ~unx,j = ~u1,j

At north and south of the boundary: ~ui,ny+1 = ~ui,2, ~ui,0 = ~ui,ny−1

nx and ny are number of grid points along x and y directions.

• Dirichlet boundary condition

Dirichlet boundary conditions are frequently used for models with fixed value on veloc-

ity or pressure at boundary, like lid-driven cavity flow or circular Couette flow, where

the Dirichlet boundary conditions is applied for velocity. Since the actual physical

domain is formed by the center lines of the grid cell, when we enforce the Dirichlet

boundary condition, we actually force the average of u and v at boundary as what we

want. For example, if we want to enforce u = u0 on west physical boundary of the

domain, we need set
u0,j+u1,j

2
= u0. In implementation it will be u0,j = 2 ∗ u0 − u1,j,

since u1,j will be calculated during the whole process but not u0,j.

• Neumann boundary condition

Neumann boundary conditions are often used for models with the normal gradient

of a variable a constant at boundary. In implementation, ∂p
∂n

is often derived from

the Navier-Stokes equation. For example, on the west or east physical boundary, the

Neumann boundary condition for pressure will be

∂p

∂x
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− u

∂u

∂x
− v

∂u

∂y
(4.12)

For velocity, the setup is similar to a Dirichlet boundary. If we need to set at the west

boundary ∂u
∂x

= c, then in implementation it will be u0,j = u1,j −∆x · c.

30

www.manaraa.com

• Boundary conditions for objects

Besides the boundary conditions we have mentioned above, there is another condition

we need to enforce, which is conditions on the objects. As explained, even though

we treat the domain inside the objects as fluid in our method, we still use this body

force to enforce the rigid motion of the objects. So for the fluid inside the objects, the

divergence free condition and rigid motion still need to be applied. Here we used the

equations below to enforce these conditions

D =
∂u

∂x
+

∂v

∂y
+Dc = 0 (4.13a)

u = ẋc − θ̇ · (Y − yc) (4.13b)

v = ẏc + θ̇ · (X − xc) (4.13c)

where Dc is the jump contribution to the divergence inside the object. Without the

above equations, the accuracy of the method cannot be guaranteed.

4.2. Temporal discretization

There are many different methods for temporal discretization, such as Runge-Kutta

method, Crank-Nicolson method, Warming-Beam method, etc. Some methods are explicit,

some are implicit, and some are mixed. Every method has its advantage and disadvantage.

Here we used explicit Runge-Kutta method for temporal discretization because it is easy to

implement and has very good accuracy and stability. The temporal discretization on the

momentum equation is as follows

un+1 − un

∆t
= −∇ · (unun)−∇pn +

1

Re
∆un + qn + Fn (4.14)

On the right hand side of above equation, all the variables u, p,q,F are at time step n, and

on the left hand side we have u at time step n+ 1 and n.

31

www.manaraa.com

4.2.1. Runge-Kutta method

In our method, we used both third and fourth order Runge-Kutta method, which ac-

cordingly have third and fourth order of accuracy for temporal discretization. Runge-Kutta

method is easy to code, has good accuracy and stability. The general form for an explicit

Runge-Kutta method with s stages is as following

Yi = yn + k
i−1∑
j=1

aijf(tn + cjk, Yj), 1 ≤ i ≤ s (4.15a)

yn+1 = yn + k
s∑

i=1

bif(tn + cik, Yi) (4.15b)

where Yi is the intermediate approximations to the solution at time tn+cik, and k = tn+1−tn.

ci, ai,j, bi are the coefficients of the Runge-Kutta scheme. In our method, if we consider the

momentum equation and prescribed movement of the objects, the equations can be written

as

∂u

∂t
= Y(u,X, p) (4.16a)

∂X

∂t
= U(X) (4.16b)

Y(u,X, p) = −∇ · (uu)−∇p+
1

Re
∆u+ q+ F (4.16c)

For the third order Cartesian jump conditions, the scheme can be derived as follows

u1 = un, X1 = Xn (4.17a)

u2 = un +
∆t

2
Y(u1,X1, p1), X2 = Xn +

∆t

2
U(X1) (4.17b)

u3 = un +∆tY(u2,X2, p2), X3 = Xn +∆tU(X2) (4.17c)

un+1 = un +
∆t

6
(Y(u1,X1, p1) + 4Y(u2,X2, p2) +Y(u3,X3, p3)) (4.17d)

Xn+1 = Xn +
∆t

6
(U(X1) + 4U(X2) + U(X3)) (4.17e)

Similarly for the fourth order Runge-Kutta method, the scheme is as following

u1 = un, X1 = Xn (4.18a)

32

www.manaraa.com

u2 = un +
∆t

2
Y(u1,X1, p1), X2 = Xn +

∆t

2
U(X1) (4.18b)

u3 = un +
∆t

2
Y(u2,X2, p2), X3 = Xn +

∆t

2
U(X2) (4.18c)

u4 = un +∆tY(u3,X3, p3), X4 = Xn +∆tU(X3) (4.18d)

un+1 = un +
∆t

6
(Y(u1,X1, p1) + 2Y(u2,X2, p2) + 2Y(u3,X3, p3) +Y(u4,X4, p4)) (4.18e)

Xn+1 = Xn +
∆t

6
(U(X1) + 2U(X2) + 2U(X3) + U(X4)) (4.18f)

In tests, since there is no big difference on the accuracy between RK3 and RK4, RK3 is

mainly used because it takes less computational time.

4.2.2. CFL number

In order to guarantee the stability of the temporal discretization, we must be very careful

on the setup of time step ∆t. Considering the Reynolds number Re and Courant-Friedrichs-

Lewy(CFL) condition, we cannot just set ∆t always as a constant. ∆t can be different with

changes of the flow field. Here we have introduced three ways to compute ∆t. The first

one is our choice of time difference ∆t0 that ∆t = ∆t0. The second ∆t is calculated by the

restriction of viscous term [46], given as

∆tv =
CFLv ·Re(

1
∆x2 +

1
∆y2

) (4.19)

The third ∆t is calculated by the restriction of convective term [24], given as

∆tc =
CFLc

umax

∆x
+ vmax

∆y

(4.20)

umax and vmax are the maximum velocity in the flow field. CFLv and CFLc are constants

for the control of ∆t. In the last, we compare all the ∆t we have and use the smallest to

make sure of stability.

∆t = min(∆t0,∆tc,∆tv) (4.21)

33

www.manaraa.com

4.3. Method Summary

The main procedure of the current method can be summarized as below:

1. Initialize the flow field and interfaces

At the beginning of the program, we need to initialize the computational geometry,

flow field and object boundaries. The vertices and curvature data can be setup using

other software like Matlab and imported into the program.

2. Calculate surface properties and geometric quantities

In this step we need calculate the ~n, ~τ and decide whether the grid points are inside

or outside of the object boundaries. The program will also calculate the intersection

points where the object interface crosses the MAC grid lines.

3. Calculate principle and Cartesian jump conditions on boundary vertices

In this step we follow the formulas derived in Chapter 3 to compute all the necessary

jump conditions .

4. Incorporate jump conditions with finite difference scheme

As principle and Cartesian jump conditions known, the jump contributions can be

calculated and added to the finite difference scheme.

5. Solve the pressure field using FFT solver or Helmholtz iterative solver

In this step right hand side of pressure Poisson equation needs to be calculated with

the jump contributions, then the pressure filed can be solved using the solvers.

6. Update the velocity field by using Runge Kutta method for time marching

Since pressure is known, we can update velocities using the momentum equation. If

the object is in motion, then the object boundary coordinates, velocity, rotation angle

and their derivatives respect to time will be calculated.

7. Go back to step 2 until finished

If the simulation comes to the end time or other criteria is reached, the program stops

and outputs all the data. If not, it goes back to step 2 and repeats the process above.

34

www.manaraa.com

Chapter 5

PARALLELIZATION OF THE IMMERSED INTERFACE METHOD

In this chapter, we will present the main idea of parallelization for the immersed interface

method. Even though we successfully extended our method for objects with non-smooth

boundaries, the method will still be restricted by our serial program if the problem is very

large or complicated. Driven by the downsides, we started the development of parallelization

for the method, which has lots of improvements from our serial program. In the first section,

we will present a brief introduction to the techniques we are using for the parallelization.

In the second section, we will present the data structure. The design for communications

is given in third section and stretched mesh is given in fourth section. We will talk about

SMG Poisson solver in fifth section and the method to compute jump contributions in sixth

section.

5.1. Introduction of Parallel Computing

In this section we will first give a short introduction to the domain decomposition of our

method. Then parallel library MPI is introduced.

5.1.1. Domain decomposition

Before the introduction about domain decomposition, let’s see a simple problem. Assume

we have matrix A and vectors x and b, the size of x and b is n, the size of A is n × n, n

is an even integer. We want to compute the residual vector r where r = b − Ax shown as

below,

35

www.manaraa.com

r1

r2

...

rn

=

−2 1 . . . 0

1 −2 . . . 0

...
...

. . .
...

0 . . . −2 1

0 . . . 1 −2

x1

x2

...

xn

−

b1

b2

...

bn

As we can see from the above matrix, ri = (xi−1 − 2xi + xi+1) − bi. In the program, we

don’t even need to store matrix A. Assume we have two processors now, for processor p1

it only stores about half of the vector x and b, which is x[1 : n
2
+ 1] and b[1 : n

2
+ 1], and

processor p2 stores x[n
2
: n] and b[n

2
+ 1 : n]. Then for p1, it can compute r[1 : n

2
] and p2

can compute r[n
2
+ 1 : n]. At the end we can collect r[1 : n

2
] and r[n

2
+ 1 : n] and put it

together to get vector r. If we ignore the communication between processors, then in theory

the computational time will be reduced by half since each processor only computes half size

of the vector r and both starts to compute at the same time. With more processors, the

computational time can be reduced more.

In the area of parallel/high performance computing, one common idea is to decompose the

computational domain into several sub-domains and distribute them to several processors,

just as we did in the last paragraph and shown in Figure 5.1. During the computation, most of

the processors will only store part of the information(blue and red dots as in Figure 5.1) from

the whole computational domain, run calculation for local parts(blue dots), and exchange

the local results with neighboring processors to get information (red dots) if necessary. By

doing this, we can distribute a very large problem to as many processors as we want, and

computational time can be largely saved if the parallel strategy is well designed.

36

www.manaraa.com

Figure 5.1: Domain decomposition. Source: http://physics.drexel.edu/

5.1.2. Message Passing Interface(MPI)

One important part need to noticed in parallel computing is the information exchange.

Let’s take a look again at the matrix problem we mentioned above, we have

ri = xi−1 − 2xi + xi+1 − bi

Assume the size of vector x and r is n, and on processor p1, i is from 1 to n
2
, and on p2, i

is from n
2
+ 1 to n. Then on the first processor, xi+1 is out of boundary when i = n

2
and on

second processor xi−1 is out of boundary when i = n
2
+1. Then information exchange for xn

2

and xn
2
+1 is necessary between two processors so this computation can be finished correctly.

With the help of Message Passing Interface(MPI) package, the information exchange can be

performed fast and robust.

37

www.manaraa.com

5.2. Data Structure

In our serial program, there are mainly four groups of variables stored in memory. The

first group is the parameters used in the program, like Reynolds number, number of time

steps, number of grids used, etc. The second group is the variables for flow field such as

velocity, pressure and divergence. The third group is the jump conditions of vertices on the

object boundary and intersections where object boundary crosses grid lines. The last group is

the jump contributions to flow field, which are located on grid points. In our serial program,

one obvious downside is that the size of all the variables are fixed. With finer resolution and

more objects, both the computational cost and memory use can be very expensive. Now

let’s talk about the details of how we handle these variables in the parallel program.

5.2.1. Parameters

For the parameters, they are also recognized as global parameters and local parameters.

Global parameters are common and identical in all processors, such as Reynolds number,

number of time steps, setups for MPI library, etc. These are are stored in each processor.

For local parameters, the value can be different in each processor, such as the beginning and

ending indices for local subdomain in x and y directions. In our parallel program, we have

parameters ipbeg, ipend, jpbeg, jpend,iubeg, iuend, jubeg, juend,ivbeg, ivend, jvbeg, jvend to

store store the beginning and ending indices for velocity and pressure field. We also have

parameters like nobj4proc(number of objects in local processor), which are used to store

local information about objects.

5.2.2. Flow field variables

In order to save memory, as shown in Figure 5.1, we divide the whole computational

domain into several subdomains. Each subdomain only stores parts of the flow field with

some extra layers prepared for information exchange, which we call ghost layers. In this way,

the size of local flow field can be adjustable based on how many processors we used on each

direction, and then local velocity and pressure can be allocated and we don’t need to store

38

www.manaraa.com

the whole flow field. In the parallel program, it will read how many grid points are set in

total, and divides them by the number of processors on x & y directions, then we will know

the actual size of local flow field variables and allocate them. One thing to notice here is, as

shown in Figure 5.1, ghost layers are also necessary for the purpose of information exchange,

so the actual local flow field variables are a little bigger. The code is shown below,

ALLOCATE(u(iubeg-nxghost:iuend+nxghost,jubeg-nyghost:juend+nyghost))

ALLOCATE(v(ivbeg-nxghost:ivend+nxghost,jvbeg-nyghost:jvend+nyghost))

ALLOCATE(p(ipbeg-nxghost:ipend+nxghost,jpbeg-nxghost:jpend+nxghost))

5.2.3. Jump conditions

As for jump condition variables, the decomposition will be different. For any object

in the flow field, it has the possibility to stay in only one subdomain or can cross several

subdomains, which is based on the shape of the object and its movement. What we did here

is at each time step, if the object is moving, the program will keep asking each processor to

detect which objects are in it and calculate the total number of vertices for these objects. At

the same time, the program will also compute the number of intersection points. Then the

jump conditions for vertices and intersections can be allocated dynamically. If the objects

are moving, these variables will be allocated and freed at each time step to improve the

memory use efficiency and the accuracy of the program can be guaranteed. For example, we

have variables ujc, vjc and pjc to store principle and Cartesian jump conditions of velocity

and pressure for vertices, which is shown as below,

ALLOCATE(ujc(1:6, 1:nvertex4proc(nobj4proc)))

ALLOCATE(vjc(1:6, 1:nvertex4proc(nobj4proc)))

ALLOCATE(pjc(1:8, 1:nvertex4proc(nobj4proc)))

where nvertex4proc(nobj4proc) is the total number of vertices on the current processor.

Similarly, we have variables for principle and Cartesian jump conditions of velocity and

pressure on intersection points, where object boundary crosses center line or edge line of

MAC grid, shown as below,

39

www.manaraa.com

ALLOCATE(ujcxf(1:6,1:n_xf_int))

ALLOCATE(vjcxf(1:6,1:n_xf_int))

ALLOCATE(vjcxc(1:6,1:n_xc_int))

ALLOCATE(ujcxc(1:6,1:n_xc_int))

ALLOCATE(pjcxc(1:8,1:n_xc_int))

ALLOCATE(ujcyf(1:6,1:n_yf_int))

ALLOCATE(vjcyf(1:6,1:n_yf_int))

ALLOCATE(vjcyc(1:6,1:n_yc_int))

ALLOCATE(ujcyc(1:6,1:n_yc_int))

ALLOCATE(pjcyc(1:8,1:n_yc_int))

xc and yc are the center lines and xf and yf are the edge lines, n xf int is the number of

intersection points on xf grid lines and similar for others.

5.2.4. Jump contributions

In our serial program, the variables for jump contributions are allocated in the beginning

and the size is not adjustable. In our parallel program, it no longer stores any information

of jump contributions. Since jump contributions are calculated from jump conditions on

intersection points, as shown in equations (2.5a) and (2.5b), and they are located on MAC

grid points, we can directly calculate jump contributions and add them to the grid points

without taking extra memory.

5.3. Information Exchange/Communication

One big advantage of our method, when comes to parallelization, is that most of the

computation can be performed locally, which means we can save time on information ex-

change. As we already know from chapter 3, most of the jump conditions can be calculated

based on velocity and pressure stored on local processor. In our parallel program, there are

mainly five parts of information exchange.

5.3.1. Ghost layers of flow field

First is the exchange of ghost layers of flow field variables u, v and p. As mentioned in

section 5.1, since we are using a finite difference scheme. On ghost layers variables will not be

40

www.manaraa.com

computed, but the information must be available for the calculation of internal grid points.

This communication between processors can be performed using function MPI SendRecv

from MPI library very easily and efficiently. Let’s see velocity u for example, which is shown

in Figure 5.2. Assume the the total size of the computational domain is nx × ny. We have 4

processors in total and 2 processors on each direction. As mentioned in last section, the local

size for u will be (iubeg − nxghost : iuend + nxghost, jubeg − nyghost : juend + nyghost),

which is dependent on the total grid number and processors. For example in Figure 5.2, we

assume nx = ny = 10 and nxghost = nyghost = 2. Since our current program is developed

for 2D case, so we only need to think about information exchange with left/right/front/back

neighbors. The code is shown as below

! x-direction

CALL MPI_SENDRECV(u(iuend-nxghost,jubeg-nyghost),1,uitype,right,0,

u(iubeg-nxghost+1,jubeg-nyghost),1,uitype,left,0,

comm2d,status,ierr)

CALL MPI_SENDRECV(u(iubeg+1,jubeg-nyghost),1,uitype,left,0,

u(iuend,jubeg-nyghost),1,uitype,right,0,

comm2d,status,ierr)

! y-direction

CALL MPI_SENDRECV(u(iubeg-nxghost,juend-nyghost),1,ujtype,back,0,

u(iubeg-nxghost,jubeg-nyghost+1),1,ujtype,front,0,

comm2d,status,ierr)

CALL MPI_SENDRECV(u(iubeg-nxghost,jubeg+1),1,ujtype,front,0,

u(iubeg-nxghost,juend),1,ujtype,back,0,

comm2d,status,ierr)

Function MPI SendRecv will send local information to the neighboring processors and at

the same time receive information from the same neighbor. So we only need to set the correct

send and receive buffer and do this to four directions. In the first function call, u(iuend −

nxghost, jubeg − nyghost) is the send buffer. The index iuend− nxghost, jubeg − nyghost

is the starting index of the local internal points which will be sent to right neighbor and will

be put on the left ghost layers of right neighbor. Here uitype, ujtype is the MPI vector type

set for information communication.

41

www.manaraa.com

4 5 6 7 8 9 10
4

5

6

7

8

9

10

1 2 3 4 5 6 7
4

5

6

7

8

9

10

4 5 6 7 8 9 10
1

2

3

4

5

6

7

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 5.2: Domain decomposition of flow field u

5.3.2. Objects information

The second kind of communication is designed for the information of objects, i.e. vertices

coordinates and curvature. For any processor, it only stores the information of objects if any

object on it. Because an object could move to any position of the computational domain, as

shown in Figure 5.3, the processor needs to find a way to know if it should receive any object

from a neighbor and how many objects to receive. In order to solve this, we have developed

a method for processors to detect the movement and pass the object information to neighbor

if any object moves to any neighbor processor. The procedure is listed as following:

1. Determine if any object has moved into neighbor processor

! store old information of objects on neighboring processors

ALLOCATE(oldproc4obj(0:8,nobj4proc))

oldproc4obj=proc4obj

! reset proc4obj

proc4obj=0

! loop over the objects and neighbors to see

! if the object is on this neighbor

42

www.manaraa.com

DO myobj=1,nobj4proc

DO neighbor=0,8

myproc=nearproc(neighbor)

DO myvertex=nvertex4proc(myobj-1)+1,nvertex4proc(myobj)-1

A(1)=xs(myvertex)

A(2)=ys(myvertex)

B(1)=xs(myvertex+1)

B(2)=ys(myvertex+1)

corner0=allcorner0(:,myproc)

corner1=allcorner1(:,myproc)

IF(panelinPE(A,B,corner0,corner1)) THEN

proc4obj(neighbor,myobj)=1

! regard the object on myproc if one of its panels on myproc

EXIT

ENDIF

END DO

END DO

END DO

proc4obj=proc4obj-oldproc4obj

! After this operation, delete if value is -1,

! send if value is 1, and no action if value is 0

DEALLOCATE(oldproc4obj)

2. Determine number of objects to be sent to each neighbor processor

nobj4send=0

DO neighbor=1,8

nobj4send(neighbor)=0

DO myobj=1,nobj4proc

IF(proc4obj(neighbor,myobj)==1) THEN

nobj4send(neighbor)=nobj4send(neighbor)+1

END IF

END DO

END DO

3. Send and receive number of objects for exchange

nobj4recv=0

DO neighbor=2,8,2

! send from one direction and receive from

! its opposite direction, then alternate

CALL MPI_SENDRECV(nobj4send(neighbor),1,MPI_INTEGER,&

43

www.manaraa.com

nearproc(neighbor),0,nobj4recv(neighbor-1),1,&

MPI_INTEGER,nearproc(neighbor-1),0,comm2d,status,ierr)

CALL MPI_SENDRECV(nobj4send(neighbor-1),1,MPI_INTEGER,&

nearproc(neighbor-1),0,nobj4recv(neighbor),1,&

MPI_INTEGER,nearproc(neighbor),0,comm2d,status,ierr)

END DO

4. Create a stack for objects and determine ending index of each object in object stack

DO neighbor=1,8

nobj4send(neighbor)=nobj4send(neighbor-1)+nobj4send(neighbor)

END DO

ntotalobj4send=nobj4send(8)

DO neighbor=1,8

nobj4recv(neighbor)=nobj4recv(neighbor-1)+nobj4recv(neighbor)

END DO

ntotalobj4recv=nobj4recv(8)

ALLOCATE(obj4send(2,ntotalobj4send))

obj4send=0

ALLOCATE(locindex4sendobj(ntotalobj4send))

locindex4sendobj=0

5. Pack objects for send in the stack

countobj=1

DO neighbor=1,8

DO myobj=1,nobj4proc

IF(proc4obj(neighbor,myobj)==1) THEN

! local object index

locindex4sendobj(countobj)=myobj

! global object index

obj4send(1,countobj)=obj4proc(myobj)

! number of vertices

obj4send(2,countobj)=nvertex4proc(myobj)&

-nvertex4proc(myobj-1)

countobj=countobj+1

END IF

END DO

END DO

44

www.manaraa.com

6. Exchange objects info with neighbors

ALLOCATE(obj4recv(2,ntotalobj4recv))

obj4recv=0

DO neighbor=2,8,2

countsend=nobj4send(neighbor)-nobj4send(neighbor-1)

IF(countsend/=0) THEN

CALL MPI_SEND(obj4send(1,nobj4send(neighbor-1)+1),&

2*countsend,MPI_INTEGER,nearproc(neighbor),0,comm2d,ierr)

END IF

countrecv=nobj4recv(neighbor-1)-nobj4recv(neighbor-2)

IF(countrecv/=0) THEN

CALL MPI_RECV(obj4recv(1,nobj4recv(neighbor-2)+1),&

2*countrecv,MPI_INTEGER,nearproc(neighbor-1),0,comm2d,status,ierr)

END IF

countsend=nobj4send(neighbor-1)-nobj4send(neighbor-2)

IF(countsend/=0) THEN

CALL MPI_SEND(obj4send(1,nobj4send(neighbor-2)+1),&

2*countsend,MPI_INTEGER,nearproc(neighbor-1),0,comm2d,ierr)

END IF

countrecv=nobj4recv(neighbor)-nobj4recv(neighbor-1)

IF(countrecv/=0) THEN

CALL MPI_RECV(obj4recv(1,nobj4recv(neighbor-1)+1),&

2*countrecv,MPI_INTEGER,nearproc(neighbor),0,comm2d,status,ierr)

END IF

END DO

DEALLOCATE(obj4send)

7. Determine number of vertices to be received

ALLOCATE(nvertex4recv(0:ntotalobj4recv))

nvertex4recv=0

DO neighbor=1,8

DO countobj=nobj4recv(neighbor-1)+1,nobj4recv(neighbor)

nvertex4recv(countobj)=nvertex4recv(countobj-1)&

+obj4recv(2,countobj)

END DO

END DO

ntotalvertex4recv=nvertex4recv(ntotalobj4recv)

45

www.manaraa.com

8. Exchange vertices and curvatures

ALLOCATE(newvertex(3,ntotalvertex4recv))

DO neighbor=2,8,2

DO countobj=nobj4send(neighbor-1)+1,nobj4send(neighbor)

myobj=locindex4sendobj(countobj)

myvertex=nvertex4proc(myobj-1)+1

countvertex=nvertex4proc(myobj)-nvertex4proc(myobj-1)

IF(countvertex/=0) THEN

CALL MPI_SEND(vertex(1,myvertex),3*countvertex,&

MPI_DOUBLE_PRECISION,nearproc(neighbor),0,comm2d,ierr)

END IF

END DO

DO countobj=nobj4recv(neighbor-2)+1,nobj4recv(neighbor-1)

myvertex=nvertex4recv(countobj-1)+1

countvertex=nvertex4recv(countobj)-nvertex4recv(countobj-1)

IF(countvertex/=0) THEN

CALL MPI_RECV(newvertex(1,myvertex),3*countvertex,&

MPI_DOUBLE_PRECISION,nearproc(neighbor-1),0,comm2d,status,ierr)

END IF

END DO

DO countobj=nobj4send(neighbor-2)+1,nobj4send(neighbor-1)

myobj=locindex4sendobj(countobj)

myvertex=nvertex4proc(myobj-1)+1

countvertex=nvertex4proc(myobj)-nvertex4proc(myobj-1)

IF(countvertex/=0) THEN

CALL MPI_SEND(vertex(1,myvertex),3*countvertex,&

MPI_DOUBLE_PRECISION,nearproc(neighbor-1),0,comm2d,ierr)

END IF

END DO

DO countobj=nobj4recv(neighbor-1)+1,nobj4recv(neighbor)

myvertex=nvertex4recv(countobj-1)+1

countvertex=nvertex4recv(countobj)-nvertex4recv(countobj-1)

IF(countvertex/=0) THEN

CALL MPI_RECV(newvertex(1,myvertex),3*countvertex,&

MPI_DOUBLE_PRECISION,nearproc(neighbor),0,comm2d,status,ierr)

END IF

END DO

END DO

DEALLOCATE(locindex4sendobj)

46

www.manaraa.com

9. Save old object data for update

ALLOCATE(oldobj4proc(nobj4proc))

ALLOCATE(oldnvertex4proc(0:nobj4proc))

oldobj4proc=obj4proc

oldnvertex4proc=nvertex4proc

DEALLOCATE(obj4proc)

DEALLOCATE(nvertex4proc)

nlocvertex=oldnvertex4proc(nobj4proc)

ALLOCATE(oldvertex(3,nlocvertex))

oldvertex=vertex

DEALLOCATE(vertex)

DEALLOCATE(xs)

DEALLOCATE(ys)

10. Count number of received repeated objects

nobj4repeat=0

DO myobj=1,ntotalobj4recv

DO countobj=1,myobj-1

IF(obj4recv(1,countobj)/=0 .AND.&

obj4recv(1,myobj)==obj4recv(1,countobj)) THEN

obj4recv(1,myobj)=0

nobj4repeat=nobj4repeat+1

EXIT

END IF

END DO

END DO

11. Determine number of objects out of the current processor

nobj4delete=0

DO myobj=1,nobj4proc

nobj4delete=nobj4delete-proc4obj(0,myobj)

END DO

47

www.manaraa.com

12. Update local object info

oldnobj4proc=nobj4proc

nobj4proc=oldnobj4proc-nobj4delete+ntotalobj4recv-nobj4repeat

ALLOCATE(obj4proc(nobj4proc))

ALLOCATE(nvertex4proc(0:nobj4proc))

obj4proc=0

nvertex4proc=0

countobj=1

DO myobj=1,oldnobj4proc

IF(proc4obj(0,myobj)==-1) THEN

oldobj4proc(myobj)=0

ELSE

obj4proc(countobj)=oldobj4proc(myobj)

nvertex4proc(countobj)=nvertex4proc(countobj-1)&

+(oldnvertex4proc(myobj)-oldnvertex4proc(myobj-1))

countobj=countobj+1

END IF

END DO

DO myobj=1,ntotalobj4recv

IF(obj4recv(1,myobj)/=0) THEN

obj4proc(countobj)=obj4recv(1,myobj)

nvertex4proc(countobj)=nvertex4proc(countobj-1)&

+obj4recv(2,myobj)

countobj=countobj+1

END IF

END DO

DEALLOCATE(oldobj4proc)

nlocvertex=nvertex4proc(nobj4proc)

13. Update local vertices and curvatures based on old data and received data

ALLOCATE(vertex(3,nlocvertex))

ALLOCATE(xs(nlocvertex))

ALLOCATE(ys(nlocvertex))

countobj=1

DO myobj=1,oldnobj4proc

IF(proc4obj(0,myobj)/=-1) THEN

vertex(:,nvertex4proc(countobj-1)+1:nvertex4proc(countobj))=&

oldvertex(:,oldnvertex4proc(myobj-1)+1:oldnvertex4proc(myobj))

countobj=countobj+1

END IF

END DO

48

www.manaraa.com

DEALLOCATE(proc4obj)

DEALLOCATE(oldnvertex4proc)

DEALLOCATE(oldvertex)

DO myobj=1,ntotalobj4recv

IF(obj4recv(1,myobj)/=0) THEN

vertex(:,nvertex4proc(countobj-1)+1:nvertex4proc(countobj))=&

newvertex(:,nvertex4recv(myobj-1)+1:nvertex4recv(myobj))

countobj=countobj+1

END IF

END DO

DEALLOCATE(obj4recv)

DEALLOCATE(nvertex4recv)

DEALLOCATE(newvertex)

14. Determine neighboring processors for each object

ALLOCATE(proc4obj(0:8,nobj4proc))

proc4obj=0

DO myobj=1,nobj4proc

DO myobj_global = 1, nobj

IF (obj4proc(myobj) == object_list(myobj_global)) THEN

CALL objUpdate(myobj_global,0,objMove)

xsc0 = objMove(1)

ysc0 = objMove(2)

theta0 = objMove(3)

ENDIF

ENDDO

DO neighbor=0,8

myproc=nearproc(neighbor)

DO myvertex=nvertex4proc(myobj-1)+1,nvertex4proc(myobj)-1

xs(myvertex)=xsc0+vertex(1,myvertex)*COS(theta0)&

-vertex(2,myvertex)*SIN(theta0)

ys(myvertex)=ysc0+vertex(1,myvertex)*SIN(theta0)&

+vertex(2,myvertex)*COS(theta0)

xs(myvertex+1)=xsc0+vertex(1,myvertex+1)*COS(theta0)&

-vertex(2,myvertex+1)*SIN(theta0)

ys(myvertex+1)=ysc0+vertex(1,myvertex+1)*SIN(theta0)&

+vertex(2,myvertex+1)*COS(theta0)

A(1)=xs(myvertex)

A(2)=ys(myvertex)

B(1)=xs(myvertex+1)

49

www.manaraa.com

B(2)=ys(myvertex+1)

corner0=allcorner0(:,myproc)

corner1=allcorner1(:,myproc)

IF(panelinPE(A,B,corner0,corner1)) THEN

proc4obj(neighbor,myobj)=1

! regard the object on myproc if one of its panels on myproc

EXIT

ENDIF

END DO

END DO

END DO

In the development, MPI Send, MPI Recv and MPI SendRecv are capable enough to han-

dle the communication work. Non-blocking functions MPI iSend and MPI iRecv are not

necessary as we need to guarantee the synchronization between all processors.

p1 p2 p3 p4

p5p6

p7p8

obj1

obj2

obj3

obj4

Figure 5.3: Objects on domain

5.3.3. Calculation of principle jump conditions for p

In this part, we are going to present the parallel strategy for calculation of principle jump

50

www.manaraa.com

conditions for p, which is the simple matrix problem (3.31) below,

−2 1 . . . 0

1 −2 . . . 0

...
...

. . .
...

0 . . . 1 −2

[p]A

[p]B

...

[p]E

=

rhsA

rhsB

...

rhsE

rhsA =

|AB|
6

([
∂p

∂τ1

]
A

+ 4

[
∂p

∂τ1

]
M1

+

[
∂p

∂τ1

]
B

)

+
|AF |
6

([
∂p

∂τ2

]
A

+ 4

[
∂p

∂τ2

]
M2

+

[
∂p

∂τ2

]
F

)
[
∂p

∂τ

]
=

[
∂p

∂x

]
τx +

[
∂p

∂y

]
τy

As we discussed in chapter 3, rhsA can be calculated based on local information. |AB| is

the length of panel,
[
∂p
∂x

]
,
[
∂p
∂y

]
, τx and τy can be easily computed. Since this is a very simple

matrix problem, in the development we used Gauss elimination method to solve it locally.

But the problem here is, for each processor, it can only compute parts of rhs vector if

the object is partially on it. If the processor wants to solve this matrix problem locally, there

is not enough information. What’s even worse is for any processor, it may have more than

one object on it. Let’s see the example in Figure 5.3, objects 1∼4 are located in different

processors from p1 to p8. For each object, the processor only has parts of the rhs stored

locally. So the question here is how can we collect right hand side vector rhs from the

processor that the object occupies, so each processor can individually solve the problem. In

order to solve this, we have developed a method to collect rhs. The main idea of the method

is to use the feature of MPI Group and MPI Allreduce. For each object, a unique group will

be created including the the processors which has this exact object on it. For example given

obj1, a group will be created including p1, p2 and p3. For each processor, it can belong to

different groups because it may have different objects on it. When computing the rhs, all

values of the right hand side can be reduced to all the processors in this exact group, then

51

www.manaraa.com

each processor can solve the matrix locally and take the parts of [p] needed. The procedure

is listed as following:

1. Define the FORTRAN structure for creating MPI group. The idea is for every object,

we will create a MPI Group involving all processors where this object is on those.

r temp will temporally store the rhs collected from all processors for each object and

p rank will store the processor ID

TYPE cg_group

INTEGER:: group, comm

DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE:: r_temp

INTEGER, DIMENSION(:), ALLOCATABLE:: p_rank, req

INTEGER, DIMENSION(:,:), ALLOCATABLE:: STATUS

END TYPE cg_group

TYPE(cg_group):: group_mpi(nobj)

INTEGER:: rank_count, rank_total(1:nobj), &

rank_temp(0:nprocs-1),rank_c(1:nobj)

2. Compute elements of rhs if the vertex for this element is located inside the local

computational domain, then we will have parts of rhs ready for each object on each

processor

3. Find ranks of each object group then create group

! Create global group0 including all preocessors

CALL MPI_COMM_GROUP(comm2d,group0,ierr)

! loop over all objects

DO myobj = 1,nobj

IF object on local processor

rank_c(myobj) = 1,

EXIT ! Exit to next object

ELSE

rank_c(myobj)=0

ENDIF

rank_temp = 0

! For each global object, gather rank for all processors

CALL MPI_ALLGATHER(rank_c(myobj),1,MPI_INTEGER, &

rank_temp,1,MPI_INTEGER,comm2d,ierr)

! Compute for each object, how many processors have it

rank_total(myobj) = SUM(rank_temp)

52

www.manaraa.com

! Assign the rank of processors to group_mpi(myobj)%p_rank

ALLOCATE(group_mpi(myobj)%p_rank(rank_total(myobj)))

rank_count = 0

DO i = 0, nprocs-1

IF(rank_temp(i) == 1) THEN

rank_count = rank_count +1

group_mpi(myobj)%p_rank(rank_count) = i

ENDIF

ENDDO

! create group for current global object

CALL MPI_GROUP_INCL(group0,rank_total(myobj), &

group_mpi(myobj)%p_rank,group_mpi(myobj)%group,ierr)

CALL MPI_COMM_CREATE(comm2d,group_mpi(myobj)%group, &

group_mpi(myobj)%comm,ierr)

ENDDO

4. Gather rhs from all processors for each object

! loop over all objects

DO myobj = 1, nobj

! Since for any processor it may not have any specific object

! so here we need identify if the communicator is NULL or not

IF(group_mpi(myobj)%comm /= MPI_COMM_NULL) THEN

! loop over local objects and find corresponding object

DO myobj_local = 1, nobj4proc

IF (obj4proc(myobj_local) == object_list(myobj)) THEN

! If global and local object matches, then create

! temporary r vector to store rhs

ALLOCATE(group_mpi(myobj)%r_temp(nvertex4proc(myobj_local) &

-nvertex4proc(myobj_local-1)))

! update x_sol & r_new

! loop over all vertices of this object

DO myvertex = nvertex4proc(myobj_local-1)+1, &

nvertex4proc(myobj_local)

A = vertex(:,myvertex)

IF((A(1)>xc(ipbeg)).AND.(A(2)>yc(jpbeg)).AND. &

(A(1)<xc(ipend+1)).AND.(A(2)<yc(jpend+1))) THEN

! Reduce the value of the vertex

! if it is inside the subdomain

CALL MPI_ALLREDUCE(jcp_rhs(myvertex), &

group_mpi(myobj)%r_temp(myvertex-nvertex4proc(myobj_local-1)), &

1, MPI_DOUBLE_PRECISION, &

MPI_SUM,group_mpi(myobj)%comm,ierr)

ELSE

! Reduce zero to all processors if the vertex not on this processor

CALL MPI_ALLREDUCE(0.0d0, &

group_mpi(myobj)%r_temp(myvertex-nvertex4proc(myobj_local-1)), 1, &

MPI_DOUBLE_PRECISION,MPI_SUM,group_mpi(myobj)%comm,ierr)

ENDIF

ENDDO

53

www.manaraa.com

END IF

END DO

ENDIF

END DO

5. Update rhs with the information we have reduced from other processors

jcp_rhs(myvertex) = group_mpi(myobj)%r_temp(myvertex &

-nvertex4proc(myobj_local-1))

6. Free the object group and group communicator

DO myobj = 1,nobj

IF(group_mpi(myobj)%comm /= MPI_COMM_NULL) THEN

CALL MPI_COMM_FREE(group_mpi(myobj)%comm, ierr)

ENDIF

CALL MPI_GROUP_FREE(group_mpi(myobj)%group, ierr)

ENDDO

7. Solve the matrix prolbem locally using Gauss-Seidel

By the method above, [p] can be easily solved. The disadvantage of this method is

for every processor it will loop over all the objects no matter the object is on it or not.

Depending on how the objects are indexed, there will be a potential bottleneck here that

one processor may be waiting for other processors work on the same object. We have another

way to solve this problem but have not implemented it into the program. For example in

Figure 5.3, obj2 only takes 4 processors. Instead of creating a group for obj2, we can simply

use MPI SendRecv to pass rhs for those four processors. We can first use MPI SendRecv

to handle small objects which only takes up to 4 processors, then for bigger objects use the

MPI Group technique to solve for [p].

In the beginning of solving this problem, we have thought another way to do it, which is

using the conjugate gradient method(CG). The algorithm is shown as below,

1. r0 := b−Ax0

2. p0 := r0

54

www.manaraa.com

3. k0 := 0

4. while do

5. αk :=
rk

Trk

pk
TApk

6. xk+1 := xk + αkpk

7. rk+1 := rk − αkApk

8. if ||rk+1||< tol, exit

9. βk :=
rk+1

Trk+1

rkT rk

10. pk+1 := rk+1 + βkpk

11. k := k + 1

12. end while

13. return xk+1

b is the right hand side vector, r is the residual vector, x0 is the initial solution. Why

we wanted to use CG at the beginning of the development is because it has this vector

multiplication rk
T rk which shows us the possibility to avoid the communication between

processors and save computational time. However, for the exact matrix problem we have

here, in calculation of pk
TApk, we still need information outside of local boundary, which

means a ghost layer is still needed and as well as the communication between processors.

Besides, if we want to use CG, this communication will be done during every while loop,

which is a big cost on computational time. In order to avoid uncountable communication in

while loops, we decide to pass the information between processors only once and then use

classical Gauss elimination to solve the problem.

55

www.manaraa.com

5.3.4. Collection communication

Besides the above information exchange, we have the collection communication between

processors. For example, when we compute time step ∆t, we have

∆tv =
CFLv ·Re(

1
∆x2 +

1
∆y2

)
∆tc =

CFLc
umax

∆x
+ vmax

∆y

∆t = min(∆t0,∆tc,∆tv)

As we know, umax and vmax are the maximum value in the flow field. However, since each

processor only stores parts of u and v, a collection communication is needed. The same

situation is applied to ∆x and ∆y. In later sections of discretizaton for parallel program,

we will talk about use of non-uniform grid in our method. Here in a word, ∆x and ∆y

could be different on each processor and we need to find the minimum ∆x and ∆y across

the whole computational domain. Another collection communication is necessary. In the de-

velopment, MPI Gather, MPI Allgather, MPI Reduce, MPI Allreduce and MPI Bcast could

handle this kind of collective communication easily. For example, the FORTRAN syntax of

MPI Allreduce is designed as below,

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNTS, DATATYPE, OP, COMM, IERROR)

SENDBUF and RECVBUF are send and receive buffer, COUNTS is the size of data. COMM

is the communicator and IERROR is the error message. What makes this function powerful

is we have this OP operation handle in the syntax, which can be MPI Max, MPI MIin,

MPI Product, MPI Sum, etc. By calling this function, we can automatically find the max or

min value of a variable from all processors, or the sum of a number from all processors. In

our method, we use MPI Allreduce to find minimum ∆x and ∆y, then use MPI Reduce to

find umax and vmax for the root processor. Then root processor calculates ∆t and broadcasts

it to all processors using MPI Bcast.

56

www.manaraa.com

Similar work has been done when we compute drag & lift coefficients.

~G =

∫
Γ

(
−p|Γ+·~n+

1

Re

(
∂~u

∂n

)
|Γ+

)
dl

We have to summarize
∑(

−p|Γ+·~n+ 1
Re

(
∂~u
∂n

)
|Γ+

)
dl over all panels, but results of(

−p|Γ+·~n+ 1
Re

(
∂~u
∂n

)
|Γ+

)
could be on different processors as objects may across different pro-

cessors. Here MPI Reduce or MPI Allreduce is necessary. For other collective communica-

tions, they are similar to the above here.

5.3.5. Parallel I/O

By far all the applications of MPI is for the calculation of our method, but when the

computation is finished, all the information of velocity and pressure field is still distributed

on different processors, as shown in Figure 5.1. The question here is how can we collect

information from all the processors and then move to the post-processing stage. Here we use

the I/O functions from MPI. For example, let’s see the output of pressure field. The codes

are shown as below,

CALL MPI_TYPE_CREATE_SUBARRAY(2, psizes, psubsizes, pstarts,&

MPI_ORDER_FORTRAN,MPI_DOUBLE_PRECISION,pfiletype,ierr)

CALL MPI_Type_commit(pfiletype,ierr)

CALL MPI_Info_create(info,ierr)

CALL MPI_Info_set(info,’collective_buffering’,’true’,ierr)

CALL MPI_File_open(comm2d,’OUTPUT/p.dat’,&

MPI_MODE_WRONLY + MPI_MODE_CREATE,info,pfh,ierr)

CALL MPI_FILE_SET_VIEW(pfh,zero_off,&

MPI_DOUBLE_PRECISION,pfiletype,’native’,MPI_INFO_NULL,ierr)

CALL MPI_FILE_WRITE_ALL(pfh,psubarray,np,&

MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE,ierr)

CALL MPI_FILE_CLOSE(pfh,ierr)

First, we have to calculate the total size of the computational domain and local size of the sub-

domain, then create a new data type usingMPI Type create subarray andMPI Type commit.

Then we need to create an info object using MPI Info create and MPI Info set to set col-

lective communication and prepare for the open of data file. Finally we can open the file,

write the pressure data with all the previous setup, and finally close the file. In our tests,

57

www.manaraa.com

this I/O process has been proved to be very efficient and there is no conflict between each

processor when writing data to the same data file.

5.4. Mesh Stretching

In this section, we will talk about some details of discretization for the parallel program.

As we introduced mesh stretching in the parallel program, many formulas have been modified

and details will be presented here.

5.4.1. Mesh stretching

In order to improve the robustness and accuracy, in our parallel program the stretched/non-

uniform mesh is introduced instead of using a uniform mesh. Stretched mesh is widely used

in CFD problems as it improves the resolution and avoids increasing the computational cost.

In our parallel program, all algorithms are redesigned based on stretched mesh. Here we

actually keep two Cartesian grids, one is uniform Cartesian grids on (ξ, η), the other one

is stretched on (x(ξ), y(η)). x is a function of ξ, and y is a function of η. In the program,

we usually set ξ = −1 : 1 and η = −1 : 1. Then the range of x and y is the range of real

computational domain.

For example, in the lid-driven Cavity flow test(6.2), the result could be more accurate

if there are more points in the area which is close to the wall on ξ = −1, 1 and η = −1, 1,

and the real computational domain is x = 0 : 1 and y = 0 : 1. So here we use the stretching

method as below:

X(ξ) =
tanh(cξ)

2 tanh(c)
+ 0.5 (5.3a)

Y (η) =
tanh(cη)

2 tanh(c)
+ 0.5 (5.3b)

Where c is a constant to control the stretching ratio, which is defined as Ratio = ∆xmax

∆xmin
.

As you can see from Figure 5.4a, ξ is uniformly distributed between -1 and 1, but for x the

points are more close to x = 0 and x = 1 and loose in the middle around x = 0.5. Figure 5.4b

shows the stretching Cartesian grids we have used in the parallel test of lid-driven Cavity

58

www.manaraa.com

flow. As you can see the grid points are more gathered close to the wall and loose in the

center. The wall looks like very thick because there are more points located there.

For different tests, the stretching method is different and it depends on the problem itself.

Besides, we also need to compute xξ, xξξ, ξx, ξxx, yη, yηη, ηy and ηyy. These results will be

used in the finite difference schemes.

5.4.2. Finite difference schemes

As we know, x = x(ξ) and y = y(η). Assume a function φ is defined on the Cartesian

grids and it is a function of x and y, then φ = φ(x, y). Then for the first and second order

derivatives, they will be

∂φ

∂x
=

∂φ

∂ξ

dξ

dx
= ξx

∂φ

∂ξ
(5.4a)

∂φ

∂ξ
=

∂φ

∂x

dx

dξ
= xξ

∂φ

∂x
(5.4b)

∂2φ

∂x2
=

∂

∂x

(
∂φ

∂ξ

dξ

dx

)
= ξxx

∂φ

∂ξ
+ (ξx)

2 ∂
2φ

∂ξ2
(5.4c)

∂2φ

∂ξ2
=

∂

∂ξ

(
∂φ

∂x

dx

dξ

)
= xξξ

∂φ

∂x
+ (xξ)

2 ∂
2φ

∂x2
(5.4d)

In our program, except ∂φ
∂x

and ∂2φ
∂x2 are necessary, sometimes we also need ∂φ

∂ξ
and ∂2φ

∂ξ2
. For

∂φ
∂y
, ∂2φ

∂y2
, ∂φ

∂η
and ∂2φ

∂η2
, the process is similar.

Now the question is how can we discretize them. Since we are using MAC method, we

have x and y in both center lines and edge lines of the MAC cell, which we call xc, xf , yc

and yf . (xc)i = xi and (xf)i = xi+ 1
2
as shown in Figure 4.1, and similar for yc and yf . For

the first order derivatives, we have three ways to discretize them depending on where we will

use them. If function φ is defined on the vertical lines xc that pass the center of MAC cell,

then the discretization will be

Central :

(
∂φ

∂x

)
i

=
φi+1 − φi−1

2∆ξ
(ξx)i (5.5a)

Forward :

(
∂φ

∂x

)
i

=
φi+1 − φi

∆ξ
(ξx)i+ 1

2
(5.5b)

59

www.manaraa.com

Backward :

(
∂φ

∂x

)
i

=
φi − φi−1

∆ξ
(ξx)i− 1

2
(5.5c)

For the second order derivative, the discretization is shown below:

∂2φ

∂x2
=

φi+1 − φi

(xξ)i+ 1
2
(xξ)i∆ξ2

− φi − φi−1

(xξ)i− 1
2
(xξ)i ∆ξ2

= (ξx)i+ 1
2
(ξx)i

φi+1 − φi

∆ξ2
− (ξx)i− 1

2
(ξx)i

φi − φi−1

∆ξ2

=
(ξx)i
∆ξ2

[
(φi+1 − φi) (ξx)i+ 1

2
− (φi − φi−1) (ξx)i− 1

2

]
=

(ξx)i
∆ξ2

[
(ξx)i− 1

2
φi−1 −

(
(ξx)i− 1

2
+ (ξx)i+ 1

2

)
φi + (ξx)i+ 1

2
φi+1

]
(5.6)

Of course there is another way to discretize the second order derivative, which is based on

equation

∂2φ

∂x2
= ξxx

∂φ

∂ξ
+ (ξx)

2 ∂
2φ

∂ξ2

But when we setup the matrix coefficients of pressure Poisson problem, the first discretization

will be easier to code since the second discretization involves both first and second order

derivatives of φ and ξ.

5.5. Pressure Solver

As we mentioned in section 4.1.3, we used FFT and Helmholtz iterative solver to solve

the pressure Poisson equation in serial. FFT is a very powerful method, but it is not

trival to develop a parallel version for it. Besides, since we are using stretched mesh in the

parallel program, FFT does not work any more. Instead, in our parallel program we use the

multigrid method to solve the the pressure Poisson problem and Hypre library is used in the

development of the program.

5.5.1. Multigrid method

In the scientific computing field, no matter what we are studying, there is always a high

possibility that we will come to solve the matrix problem Ax = b. The matrix A could be

dense or sparse, symmetric or even semi-positive definite. In order to solve this problem,

60

www.manaraa.com

people have been studying it since as early as 19th century. There are some very famous

methods that are widely used by researchers, like Gauss elimination method, successive over-

relaxation(SOR) method, singular value decomposition(SVD), etc. There are also iterative

methods like generalized minimum residual method(GMRES), conjugate gradient(CG), and

the method we used here, which is multigrid method(MG).

In the multigrid method, the main idea is to accelerate the convergence of classical

iterative method by solving the problem on coarser grids. For many standard iterative

methods, they possess the property that they are effective at eliminate the high-frequency or

oscillatory components of the error and leaving the low-frequency components unchanged.

But what we want is to make this method effective on all error components. First thing we

know is, on a coarser grid, the remaining smooth error components will look more oscillatory,

which means the smooth error components on a fine grid will be less smooth on a coarse

grid. This suggests we can use relaxation method on a coarser grid to make it more effective.

The second thing we know is, assuming we have x̄ is the exact solution of Ax = b and u

is the approximation result, then the error e = u − x̄ satisfies Ae = r = b − Au. The

relaxation on Ax = b is equivalent to relaxation on Ae = r with the special initial guess

e = 0. Then by solving e, we can make a correction to the result u and let the result be more

accurate. Inspired by this, we can repeat the relaxation process on a coarser and coarser

grid until it reaches to the coarsest grid. Now let me introduce a classical multigrid method

scheme, which is the V-Cycle scheme, to demonstrate how it works. Assume we have this

function MG, ν1 and ν2 are the total number of smooth operations for pre-relaxation and

post-relaxation. h means operation on fine grid and 2h means operation on coarsen grid.

Matrix A is the stencil, u0 is the initial guess and b is the right hand side. The scheme is

shown below

uh = MG(Ah,uh
0 ,b

h, ν1, ν2)

1. Pre-relaxation: uh = smoothν1(Ah,uh,bh)

2. Get residual rh = bh − Ahuh

61

www.manaraa.com

3. Coarsen: r2h = I2hh rh

4. If reaches the coarsest grid:

5. Solve: A2hδ2h = r2h

6. Else:

7. Recursion: δ2h = MG(A2h, 0, r2h, ν1, ν2)

8. End If

9. Correction: uh = uh + Ih2hδ
2h

10. Post-relaxation: uh = smoothν2(Ah,uh,bh)

11. Return uh

In the V-cycle here, we used idea of recursion to help us improve the speed. By calling the

same function MG(A2h, 0, r2h, ν1, ν2) for solving δ2h inside the function, the program will go

to a coarser level again instead of just returning to the last finer level. There are more details

of the multigrid method can be found in [8, 51] if anyone is interested.

5.5.2. Hypre library

Hypre library provides a suite of scalable linear solvers for large-scale scientific computing

in C, C++ and FORTRAN. It is developed by Lawrence Livermore national library mainly

based on multigrid methods and it uses MPI for communication between processors. It

solves problems faster than traditional methods at large scale and has good support of both

structured and unstructured grids problems. This library has been widely used by many

institutes and researchers, and the solvers are proved to be stable, accurate, efficient and

stable.

The setup of Hypre is very easy and steps are as following:

1. Create the 2D/3D grid and set the extents

2. Build the stencil and set the stencil element

62

www.manaraa.com

3. Build the stencil of matrix A for pressure Poisson problem Ax = b

Since our parallel program is developed for a 2D problem, we need modify equation

(5.6). The result is shown as below:(
∂2φ

∂x2
+

∂2φ

∂y2

)
i,j

=
(ξx)i
∆ξ2

[
(ξx)i− 1

2
φi−1,j −

(
(ξx)i− 1

2
+ (ξx)i+ 1

2

)
φi,j + (ξx)i+ 1

2
φi+1,j

]
+
(ηy)j
∆η2

[
(ηy)j− 1

2
φi,j−1 −

(
(ηy)j− 1

2
+ (ηy)j+ 1

2

)
φi,j + (ηy)j+ 1

2
φi,j+1

]
(5.7)

As shown in this equation, a five-point stencil is established,
back

left center right

front

left =
(ξx)i
∆ξ2

(ξx)i− 1
2
, right =

(ξx)i
∆ξ2

(ξx)i+ 1
2

(5.8a)

front =
(ηy)j
∆η2

(ηy)j− 1
2
, back =

(ηy)j
∆η2

(ηy)j+ 1
2

(5.8b)

center = −(ξx)i
∆ξ2

(
(ξx)i− 1

2
+ (ξx)i+ 1

2

)
−

(ηy)j
∆η2

(
(ηy)j− 1

2
+ (ηy)j+ 1

2

)
(5.8c)

On the boundary, the stencil will be dependent on the boundary conditions and the

setup could be different.

4. Setup the solution vector x and right-hand-side vector b

5. Choose the solver and preconditioners from different multigrid methods and set solver

parameters, such as tolerance and maximum iteration number

6. Assign values of vector x and b to the solver, assemble the problem with the solver we

choose and matrix A

7. Solve the problem of Ax = b

63

www.manaraa.com

8. Return the computation result to x and retrieve other desired information

9. Free the solver

In the actual use of Hypre, the solver we chose is SMG, which stands for semi-coarsening

multigrid method. In the 2D SMG solver, it operates semi-coarsening on x-direction and line

relaxation in the y-direction. It is a very robust method and can give excellent convergence

results. More details of SMG solver can be found in [9, 20,53].

5.5.3. Compatibility condition

Even though our method is theoretically correct, in the actual computation the errors will

always be generated. The errors may be small and not significant, but it actually destroys

the compatibility condition for the Neumann problem, affects our use of Hypre library and

the computation often failed. So what we are doing here is to force the right hand side vector

to satisfy the compatibility condition before pass it to the Hypre SMG solver.

For problem Ax = b, it has a solution if and only if b is orthogonal to the solution of

ATz = 0, which is bTz = 0. Since in reality bTz 6= 0, then we need to find b̂ to satisfy

b̂Tz = 0. So here we let

b̂ = b− bTz

zTz
z (5.9)

then

b̂Tz = bTz− bTz

zTz
zTz = bTz− bTz = 0 (5.10)

All we need to do is find z, such that b̂Tz = 0. This z can be found with ATz = 0. Matrix A

is the 5-point stencil we have discussed in the previous part of this section, and in a general

discretization form ATz = 0 will be

Ai−1,jzi−1,j + Ai+1,jzi+1,j + Ai,jzi,j + Ai,j+1zi,j+1 + Ai,j−1zi,j−1 = 0 (5.11)

By bringing the actual Ai,j to the equation above, we can build the following equations(the

proof is skipped):

zij = piqj (5.12a)

64

www.manaraa.com

p1 = 1, q1 = 1 (5.12b)

pi =
(xi+ 1

2
− xi− 1

2
)(x2 − x0)

(x 3
2
− x 1

2
)(x1 − x0)

p1, i = 2 : nx − 1 (5.12c)

qj =
(yj+ 1

2
− yj− 1

2
)(y2 − y0)

(y 3
2
− y 1

2
)(y1 − y0)

q1, j = 2 : ny − 1 (5.12d)

pnx =
(xnx+

1
2
− xnx− 1

2
)(xnx+1 − xnx)(x2 − x0)

(xnx+1 − xnx−1)(x 3
2
− x 1

2
)(x1 − x0)

p1 (5.12e)

qny =
(yny+

1
2
− yny− 1

2
)(yny+1 − yny)(y2 − y0)

(yny+1 − yny−1)(y 3
2
− y 1

2
)(y1 − y0)

q1 (5.12f)

nx and ny is the number of grid points on each direction, and vector z is built based on the

coordinates of stretching grid. With a different stretching method, the value of z will be

different.

5.6. Jump Contributions

Previously our method was based a uniform mesh and central finite difference scheme can

be easily applied. Now we are using stretched mesh, the finite difference schemes are still be

able to be used but some modifications are needed. In chapter 2, we have equations (2.5a)

and (2.5b) for first and second order central finite difference schemes with incorporation of

jump conditions, now let’s see an example how they will be modified for stretched mesh.

5.6.1. Jump contribution of pressure

As shown in Figure 5.5, assume function p(x) is defined on the whole domain and has

jump conditions at a, b, c, d, and x = x(ξ). Our goal here is to find
(

∂2p
∂x2

)
i
. First, in order

to use finite difference scheme, we should change it to an expression with uniform mesh.(
∂2p

∂x2

)
=

∂

∂ξ

(
∂p

∂x

)
· dξ
dx

(5.13)

Apply finite difference scheme on the equation above, we have(
∂2p

∂x2

)
i

=
(ξx)i
∆ξ

((
∂p

∂x

)
i+ 1

2

−
(
∂p

∂x

)
i− 1

2

+ correction terms

)
(5.14)

65

www.manaraa.com

Then our current job is to find
(
∂p
∂x

)
i+ 1

2

and
(
∂p
∂x

)
i− 1

2

. By applying the finite difference

scheme again, we have(
∂p

∂x

)
i+ 1

2

=

(
∂p

∂ξ

)
i+ 1

2

(ξx)i+ 1
2

= (ξx)i+ 1
2

(
pi+1 − pi

∆ξ
+

1

∆ξ

(
−

2∑
n=0

[p(n)(c)]

n!
(ξi − x2ξ(c))−

2∑
n=0

[p(n)(d)]

n!
(ξi+1 − x2ξ(d))

))
(5.15a)(

∂p

∂x

)
i− 1

2

=

(
∂p

∂ξ

)
i− 1

2

(ξx)i− 1
2

= (ξx)i− 1
2

(
pi − pi−1

∆ξ
+

1

∆ξ

(
−

2∑
n=0

[p(n)(a)]

n!
(ξi−1 − x2ξ(a))−

2∑
n=0

[p(n)(b)]

n!
(ξi − x2ξ(b))

))
(5.15b)

where function x2ξ will change the grid coordinates from stretched mesh to uniform mesh.

Similarly, we have function ξ2x in the program which will change grid coordinates from

uniform mesh to stretched mesh. [·]n here means the order of jump conditions.

• At n = 0, [p(n)] = [p]

• At n = 1, [p(n)] =
[
∂p
∂ξ

]
=
[
∂p
∂x

]
xξ

It is important to be very careful here because since we are using a finite different

scheme for uniform grids(ξ & η), we must use
[
∂p
∂ξ

]
instead of

[
∂p
∂x

]
• At n = 2, [p(n)] =

[
∂
∂ξ

∂p
∂ξ

]
=
[

∂
∂ξ

∂p
∂x

]
xξ =

[
∂p
∂x

]
xξξ +

[
∂2p
∂x2

]
(xξ)

2

Similar as n = 1, we have to use ∂
∂ξ

[
∂p
∂ξ

]
instead of

[
∂2p
∂x2

]
With

(
∂p
∂x

)
i+ 1

2

and
(
∂p
∂x

)
i− 1

2

known, equation (5.14) can be expressed as

(
∂2p

∂x2

)
i

= (ξx)i
∂

∂ξ

(
∂p

∂x

)
i

=
(ξx)i
∆ξ

(∂p

∂x

)
i+ 1

2

−
(
∂p

∂x

)
i− 1

2

+

−
2∑

n=0

[
p
(n)
x (b)

]
n!

(
ξi− 1

2
− x2ξ(b)

)n
−

2∑
n=0

[
p
(n)
x (c)

]
n!

(
ξi+ 1

2
− x2ξ(c)

)n
(5.16)

• At n = 0,
[
p
(n)
x

]
=
[
∂p
∂x

]
66

www.manaraa.com

As the equation above is simply the finite difference scheme to use on ∂p
∂x
, so here at

n = 0 we should use
[
∂p
∂x

]
but not [p].

• At n = 1,
[
p
(n)
x

]
= ∂

∂ξ

[
∂p
∂x

]
= ∂

∂x

[
∂p
∂x

]
xξ =

[
∂2p
∂x2

]
xξ

Similarly at n = 1, we must find first order derivative of ∂p
∂x

on uniform grids ξ, ∂
∂ξ

(
∂p
∂x

)
should be used but not ∂p

∂x
or ∂2p

∂x2 .

• At n = 2, we set
[
p
(n)
x

]
= 0, because we didn’t calculate third-order Cartesian jump

conditions and second order is enough.

Now we have successfully conducted first and second order central finite difference schemes

with incorporation of jump conditions under stretched mesh. Equations (5.15) and (5.16)

can also be applied to the calculation of jump contributions for velocity, divergence and

strain.

5.6.2. Jump contribution of interpolation

Assume function g(ξ) is defined on Cartesian grids and has jump condition atD, as shown

in Figure 5.6, then the interpolation at point B will be calculated from points A,D,C, which

is shown as below

gB =
gA + gc

2
+

1

2
[gD]−

1

2

[
∂gD
∂z

]
h− +

1

4

[
∂2gD
∂z2

]
(h−)2 +O(h2) (5.17)

gB =
gA + gc

2
− 1

2
[gD]−

1

2

[
∂gD
∂z

]
h+ − 1

4

[
∂2gD
∂z2

]
(h+)2 +O(h2) (5.18)

The above equations are developed for a uniform mesh. The first equation is for D between

A and B, and second equation is for D between B and C. When we compute interpolation

gB using stretched mesh, we are actually computing gB under uniform mesh. The values is

same though under different coordinates. But for the jump conditions, it will be different.

First let’s see the interpolation equations under uniform mesh,

gB =
gA + gc

2
+

1

2
[gD]−

1

2

[
∂gD
∂ξ

]
ξ− +

1

4

[
∂2gD
∂ξ2

]
(ξ−)2 +O(ξ2) (5.19a)

67

www.manaraa.com

gB =
gA + gc

2
− 1

2
[gD]−

1

2

[
∂gD
∂ξ

]
ξ+ − 1

4

[
∂2gD
∂ξ2

]
(ξ+)2 +O(ξ2) (5.19b)

As shown above, we need [gD],
[
∂gD
∂ξ

]
, ξ−,

[
∂2gD
∂ξ2

]
and ξ+. For ξ+ and ξ−, and we also need

use function x2ξ to transform grid coordinates from x to ξ. For
[
∂gD
∂ξ

]
and

[
∂2gD
∂ξ2

]
, we will

apply equations (5.4). Finally we can derive the equation below for interpolation,

gB =
gA + gc

2
+

1

2
[gD]−

1

2

[
∂gD
∂ξ

]
ξ− +

1

4

[
∂2gD
∂ξ2

]
(ξ−)2 +O(ξ2)

=
gA + gc

2
+

1

2
[gD]−

1

2
xξ(D)

[
∂gD
∂x

]
(x2ξ(D)− x2ξ(A))

+
1

4
(x2ξ(D)− x2ξ(A))2

(
(xξ(D))2

[
∂2gD
∂x2

]
+ xξξ(D)

[
∂gD
∂x

])
+O(ξ2), A < D < B

(5.20a)

gB =
gA + gc

2
− 1

2
[gD]−

1

2

[
∂gD
∂ξ

]
ξ+ − 1

4

[
∂2gD
∂ξ2

]
(ξ+)2 +O(ξ2)

=
gA + gc

2
− 1

2
[gD]−

1

2
xξ(D)

[
∂gD
∂x

]
(x2ξ(C)− x2ξ(D))

− 1

4
(x2ξ(C)− x2ξ(D))2

(
(xξ(D))2

[
∂2gD
∂x2

]
+ xξξ(D)

[
∂gD
∂x

])
+O(ξ2), B < D < C

(5.20b)

The above equations are mainly used for interpolation of velocity at center and edge points

of the MAC cell.

68

www.manaraa.com

(a) Stretched mesh X = X(ξ), c = 3

(b) Stretching Cartesian Grids

Figure 5.4: Stretched mesh

69

www.manaraa.com

| | | | |b b b b

i− 1 i−
1

2
i i+

1

2
i+ 1

a b c d
x

Figure 5.5: p = p(x(ξ)) with jumps on a, b, c, d

bbc
b

b

h− h+

h

2
h

2

A
D

B

C

ξ

Figure 5.6: g = g(ξ) with jumps at D

70

www.manaraa.com

Chapter 6

NUMERICAL SIMULATIONS

In section, we present results of several numerical simulations to demonstrate the accu-

racy, robustness and efficiency of our method. In the development of our program, we first

developed a serial program to prove our method is accurate and valid, then we developed a

parallel program to improve the robustness and efficiency further. In this chapter, simulation

results will be marked as serial or parallel. As mentioned in Chapter 1, all the parallel tests

were simulated on SMU high-performance computing facility ManeFrame. The tests are as

following:

• Poisson solver with jump conditions

• Lid-driven cavity flow

• Circular Couette flow

• Flow past single stationary circular cylinder

• Flow past single stationary square cylinder

• Flow past two square cylinders in tandem arrangement

• Flow around single hovering flapper

• Flow around multiple hovering flappers

• Cylinders rotating along a circle

• Flow past stationary triangle cylinder

• Flow past SMU mascot Peruna

71

www.manaraa.com

6.1. Poisson Solver With Jump Conditions

In this section, the test of Poisson solver with involvement of jump conditions is presented.

Previously in Xu and Pearson [76], they have developed the method for computing necessary

Cartesian jump conditions in 3D using a triangular mesh, and simulation results of the

Poisson solver was given to show the accuracy. In section 3.2, we have showed how to

compute the necessary principle and Cartesian jump conditions in 2D using line segment

representation for interfaces. In order to test the accuracy of the jump conditions and

Poisson solver, a similar simulation is tested here. Figure 6.1 shows the geometry of this

test. The circle and square in the middle are the objects we want to test. The size of

computational domain is [−3, 3]× [−3, 3]. The radius of the circular cylinder is 0.5 and the

side length of square is 1. Assume Γ is the object boundary, then we construct the function

p(x, y) and it is discontinuous across the boundary Γ, which is shown as below

p(x, y) =

sin(x) sin(y), outside Γ

e−(x+y), inside Γ

(6.1)

We used this analytical expression for p to compute principle and Cartesian jump condi-

tions, and then use the jump conditions to calculate jump contributions and finally solve the

Poisson equation (4.5). By comparing the results with the analytical expression for p, we

can find the accuracy of our method for computing the jump conditions and Poisson solver.

Table 6.1 and 6.2 present the results and second order convergence is achieved in all tests.

For the tests in table 6.2, the stretching method is x(ξ) = 3tanh(cξ)
tanh(3c)

, c is constant to control

the stretching ratio.

6.2. Lid-driven Cavity Flow

In the first example we showed the accuracy of the Poisson solver and here we want to

examine the validation of our method for a flow problem without any object. 2D lid-driven

cavity flow is a very good example. Assume there is a box full of fluid, and on the top of

72

www.manaraa.com

Figure 6.1: Geometry of Poisson solver test

box there is a lid driving the fluid moving from right to left. After some time, the motion of

fluid inside the box will reach to a steady state.

6.2.1. Validation

For the validation test, the geometry is shown in Figure 6.2. In the test, the computational

domain was [0, 1]× [0, 1]. For velocity, Dirichlet boundary condition was applied on all sides.

On the left, right and bottom, the boundary condition of velocity was 0. On top, u = −1 and

v = 0. For pressure, Neumann boundary condition was applied on all sides. The simulation

was tested at Re = 100 & 1000, and 4 cores were used. For Re = 100, 65× 65 and 129× 129

grids were used. For Re = 1000, 129 × 129 and 161 × 161 grids were used. The simulation

results are given in table 6.3 and 6.4 and the velocity extrema along the center lines are

shown, which are the key characteristics for the cavity flow. umax is the maximum of u on

the vertical line where x = 0.5 and ymax is its location. Similarly, vmax is the maximum of

v on the horizontal line where y = 0.5 and xmax is its location, vmin is the minimum of v

73

www.manaraa.com

Circular Cylinder

Grid
Uniform Non-uniform

∆x Error Convergence ∆ξ Error Convergence

129 0.04688 8.99E-04 0.04688 7.99E-04

257 0.02344 2.26E-04 1.992 0.02344 2.07E-04 1.950

513 0.01172 5.64E-05 2.004 0.01172 5.33E-05 1.956

1025 0.00586 1.42E-05 1.992 0.00586 1.31E-05 2.021

2049 0.00293 3.61E-06 1.974 0.00293 3.16E-06 2.056

Table 6.1: Poisson solver test with circular cylinder, 4 cores

Square Cylinder

Grid
Uniform Non-uniform

∆x Error Convergence ∆ξ Error Convergence

129 0.04688 1.70E-03 0.04688 1.57E-03

257 0.02344 3.98E-04 2.097 0.02344 3.25E-04 2.271

513 0.01172 1.09E-04 1.873 0.01172 1.01E-04 1.689

1025 0.00586 2.56E-05 2.087 0.00586 2.63E-05 1.936

2049 0.00293 6.83E-06 1.906 0.00293 6.41E-06 2.039

Table 6.2: Poisson solver test with square cylinder, 4 cores

on the horizontal line where y = 0.5 and xmin is its location. The stretching method here

was x(ξ) = tanh(c(ξ−0.5))
2tanh(0.5c)

+ 0.5. By comparing the results with other people’s work, good

agreement can be found. Figure 6.3 gives the stream function of the lid-driven cavity flow

at Re = 1000.

6.2.2. Parallel speedup and efficiency

Since our final goal is to develop an accurate, efficient and robust parallel program, we

need to look at the parallel speedup and efficiency of our program. In this test, 1 to 256 cores

were used. The computational domain was [0, 10] × [0, 10] with a 1601 × 1601 grid. 2000

time steps were used for Re = 1000. The boundary condition was same as the validation

74

www.manaraa.com

(0,0) (1,0)

(0,1) (1,1)

u = −1, v = 0

Figure 6.2: Geometry of lid-driven cavity flow

Reference Grid umax ymax vmax xmax vmin xmin

Ref. [5] 64x64 0.214042 0.4581 0.1795728 0.7630 -0.2538030 0.1896

Ref. [15] 64x64 0.21315 - 0.17896 - -0.25339 -

Present 65x65 0.213179 0.453846 0.179253 0.761538 -0.253665 0.192308

Ref. [23] 129x129 0.21090 0.4531 0.17527 0.7656 -0.24533 0.1953

Ref. [10] 129x129 0.2106 0.4531 0.1786 0.7656 -0.2521 0.1875

Present 129x129 0.213741 0.46124 0.17943 0.763566 -0.253428 0.189922

Table 6.3: Lid-driven cavity flow at Re = 100

test. Figure 6.4 shows the total computational time(seconds) of the parallel program and the

computational time which the SMG solver takes during the simulation. Figure 6.5 and table

6.5 show the parallel speedup of our program. Figure 6.6 and table 6.6 show the parallel

efficiency of the program and percentage of SMG time compared with total computational

time. The parallel speedup and efficiency are computed by the formulas below:

speedup =
sequential time

parallel time
(6.2a)

efficiency =
speedup

processors
(6.2b)

75

www.manaraa.com

Figure 6.3: Stream function of lid-driven cavity flow

As we can find from Figure 6.5 and table 6.5, for 1 to 8 cores, the parallel speedup for

total computational time increased slowly. For 8 to 80 cores, the speedup was increasing,

and then for more than 80 cores it was decreasing. The highest speedup is 12.4633. The

same result also happens to the SMG solver. In this set of tests here, we compared the

SMG computational time with the total time. For every single test, as we can find from

table 6.6 and figure 6.6, the SMG solver takes more than 90% of the total computational

time. Since SMG is an iterative solver, it is reasonable to take more computational time.

Besides, there could be communication between different cores inside the SMG solver, but

since we are not familiar with the coding details of SMG, we cannot record the iterative time,

communication time and time for other possible computation from the SMG solver. Our

own communication between ghost layers only takes up to 0.52% of the total time, which is

very efficient. Besides, figure 6.6 shows us that the overall efficiency is almost identical to

the efficiency of SMG solver. We can see the speedup and efficiency of our method is mainly

dependent on the SMG solver.

76

www.manaraa.com

Reference Grid umax ymax vmax xmax vmin xmin

Ref. [5] 128x128 0.3885698 0.1717 0.3769447 0.8422 -0.5270771 0.0908

Ref. [23] 129x129 0.38289 0.1719 0.37095 0.8437 -0.51550 0.0937

Present 129x129 0.385671 0.174419 0.374273 0.841085 -0.523069 0.096899

Present* 129x129 0.394481 0.174858 0.383777 0.84033 -0.534601 0.093218

Ref. [5] 160x160 0.3885698 0.1717 0.3769447 0.8422 -0.5270771 0.0908

Present 161x161 0.386791 0.177019 0.375471 0.841615 -0.524442 0.0900621

Present* 161x161 0.396790 0.174384 0.386014 0.843847 -0.537264 0.091206

*: stretching mesh was used.

Table 6.4: Lid-driven cavity flow at Re = 1000

6.2.3. Scalability Test

In this part, we tested our parallel program’s scalability using large number of cores.

The computational domain is [0, 64]× [0, 64], and 8193× 8193 grid points were used, 16 to

1024 of cores were tested. The results is shown in table 6.7. We can find that SMG solver

takes more than 90% of the total computational time in each test and the parallel program

is stable to use up to 1024 cores. It is difficult to find any trend on the computational time

when increasing the number of cores.

6.3. Circular Couette Flow

In this section, the simulation of steady circular Couette flow is given. The simulation

results can help us examine our method’s accuracy and convergence when an object is in-

volved. In this test, we assume there are two circular cylinders rotating at different speeds

and there is fluid between the cylinders. The geometry is shown in Figure 6.7. Here r is

the radius of the circular cylinder and Π is the angular velocity of the cylinder rotation. In

this test, r1 = 0.5 and r2 = 2, Π1 = 1 and Π2 = −1. The actual computational domain was

the rectangular lx × ly, where lx = ly = 2. Only the inside circular cylinder was included in

the computational domain. On the boundary, analytical Dirichlet boundary conditions were

used for velocity and analytical Neumann boundary conditions were used for pressure.

77

www.manaraa.com

Figure 6.4: Computational time for cavity flow with different number of processors

The analytical solution of the flow between the two cylinders can be found and is given

below

u = −
(
A1 +

A2

r2

)
y, (6.3a)

v =

(
A1 +

A2

r2

)
x, (6.3b)

p =
A2

1r
2

2
− A2

2

2r2
+ A1A2 · ln(r2) + pc, (6.3c)

where A1 =
Π2r22−Π1r21

r22−r21
, A2 =

(Π1−Π2)r21r
2
2

r22−r21
, r2 = x2 + y2, and pc is an arbitrary constant. As

the analytical solution is already known, we can compare our computational results to verify

our method’s accuracy and order of convergence. The Reynolds number used here was 10.

On the computational domain boundary B, we used Dirichlet boundary conditions for

velocity and Neumann boundary conditions for pressure. Table 6.8 and 6.9 present the

convergence analysis. From the tables we can find second order convergence is achieved for

u and v by increasing the number of grid points, and first order convergence is achieved for

p. The stretching method used in Table 6.9 was x(ξ) = sinh(cξ)
2sinh(c)

.

78

www.manaraa.com

Figure 6.5: Cavity flow parallel speedup

6.4. Flow Past Circular Cylinder

In this section, the test of flow past a stationary circular cylinder is presented. Many

researchers have been working on this problem and numerous experimental and numerical

experiments have been conducted. This test can help us check the validation of our method.

6.4.1. Geometry of the computational domain

In this part, flow past a stationary circular cylinder was tested at Re = 20, 40, 100 and

200, and the geometry is shown in Figure 6.8. The domain size was [−8, 24]× [−8, 8]. The

spatial resolution for Re = 20 and 40 was Nx ×Ny ×Ms = 961× 481× 256, and the spatial

resolution for Re = 100 and 200 was Nx × Ny × Ms = 1601 × 801 × 256. Nx and Ny was

the number of grid points on x and y directions and Ms is the number of vertices on object

boundary. The CFL coefficient for time step was set as CFLc = CFLv = 0.5.

6.4.2. Boundary conditions

The initial setup for flow field was uniform flow with u = 1 in the x direction and v = 0

in y direction.

• Inlet: u = 1, v = 0 and ∂p
∂x

= 1
Re

∂2u
∂x2 .

79

www.manaraa.com

Figure 6.6: Cavity flow parallel efficiency and percentage of total time

• Outlet: ∂u
∂x

= 0, ∂v
∂x

= 0 and ∂p
∂x

= 1
Re

∂2u
∂x2 .

• Top: ∂u
∂y

= 0, ∂v
∂x

= 0 and ∂p
∂x

= 1
Re

∂2u
∂y2

.

• Bottom: ∂u
∂y

= 0, ∂v
∂x

= 0 and ∂p
∂x

= 1
Re

∂2u
∂y2

.

6.4.3. Re = 20, 40

At Re = 20 and 40, the flow separates when meets the object and reattaches behind the

object in some distance. Figure 6.9 is the stream function contours for flow past cylinder at

Re = 20. Behind the cylinder, two recirculation vortices are formed in the wake, where the

length L and a, b are defined. This phenomena is as expected, which has been shown in [36].

At Re = 20 & 40, the lift coefficient approaches to 0. The drag coefficient Cd is a constant

as the flow is steady. In Table 6.10, Cd, L, a, b are compared with other experimental and

numerical results. Good agreement can be seen.

6.4.4. Re = 100, 200

At Re = 100 & 200, the flow is unsteady and the famous Von Karman vortex street is

formed in the wake as expected, which can be observed from Figure 6.10. Table 6.11 compares

the results of drag coefficient Cd, lift coefficient Cl and Strouhal number St with previous

80

www.manaraa.com

processors speedup(overall) efficiency(overall) speedup(SMG) efficiency(SMG)

1 1.0000 100.00% 1.0000 100.00%

2 0.9185 45.92% 0.8646 43.23%

4 1.5895 39.74% 1.4968 37.42%

8 1.7988 22.49% 1.6765 20.96%

16 6.3369 39.61% 6.0870 38.04%

25 9.4312 37.72% 8.9970 35.99%

32 11.3310 35.41% 10.6870 33.40%

40 11.8368 29.59% 11.1277 27.82%

64 12.4633 19.47% 11.5154 17.99%

80 12.5349 15.67% 11.4484 14.31%

100 11.9079 11.91% 10.8164 10.82%

128 10.6167 8.29% 9.5986 7.50%

256 7.4616 2.91% 6.7116 2.62%

Table 6.5: Cavity flow parallel speedup and efficiency

numerical results, which shows our results are within good ranges. Figure 6.11 shows the

drag and lift coefficients evolve with time at Re = 100 and Re = 200. As we can tell from

Figure 6.11, the drag coefficient frequency is twice as the lift coefficient frequency, which

is the same as the vortex shedding frequency or Strouhal frequency. This observation also

matches our expectation. The vortices appear in two lines in the wake, which is unsteady

and asymmetric. Each of the upper and lower vortices will bring one drag period to the

object separately but together they only bring one lift period to the object. We can also

notice that the average drag coefficient is non-zero but the average lift coefficient is zero.

6.5. Flow Past Square Cylinder

In this section we present the simulation of flow past a stationary square cylinder. As the

main purpose of our new method is simulating flow past objects with non-smooth boundaries,

square cylinder is a good example. The geometry of this test is shown in Figure 6.8. We

have tested low Reynolds numbers Re up to 100 under different blockage ratios B, where B

81

www.manaraa.com

processors total(s) SMG(s) SMG % ghost layer(s) ghost layer %

1 42659.55 37912.52 88.87% 0.04 0.00%

2 46372.01 43681.23 94.20% 17.87 0.04%

4 26838.74 25329.13 94.38% 11.30 0.04%

8 23715.16 22614.28 95.36% 30.89 0.13%

16 6731.97 6228.43 92.52% 19.84 0.29%

25 4523.24 4213.93 93.16% 23.56 0.52%

32 3764.87 3547.54 94.23% 10.58 0.28%

40 3603.98 3407.03 94.54% 12.36 0.34%

64 3422.80 3292.33 96.19% 10.67 0.31%

80 3403.27 3311.61 97.31% 6.62 0.19%

100 3582.46 3505.11 97.84% 7.80 0.22%

128 4018.14 3949.78 98.30% 7.23 0.18%

256 5717.21 5648.82 98.80% 24.73 0.43%

Table 6.6: Cavity flow percentage of time

is ratio of the symmetric square edge length to the domain width, B = D
H
. The blockage

ratio is a key parameter for researchers to compare numerical and experimental results.

6.5.1. Numerical tests setup

• B = 0.05, 0.0625, 0.067

The domain size was [−10, 30]× [− D
2B

, D
2B

] and spatial resolution was Nx ×Ny ×Ms =

1200× 30D
B

× 256.

• CFL coefficients for time step

The CFL coefficients for time step was set as CFLc = CFLv = 0.5.

6.5.2. Boundary conditions

The initial setup for flow field was uniform flow with u = 1 in the x direction and v = 0

in y direction.

82

www.manaraa.com

Cores total SMG SMG % Ghost Layers Ghost Layers %

16 29585.72 26954.63 91.11% 14.50 0.05%

32 14115.29 12789.52 90.61% 10.30 0.07%

64 7455.57 6730.72 90.28% 8.12 0.11%

128 4789.93 4401.82 91.90% 16.12 0.34%

256 3359.69 3122.98 92.95% 18.39 0.55%

400 11226.45 10725.75 95.54% 280.89 2.50%

512 13221.24 11960.81 90.47% 912.41 6.90%

625 18440.04 18211.99 98.76% 55.37 0.30%

800 24727.19 23631.67 95.57% 408.81 1.65%

1000 5802.49 5601.13 96.53% 67.62 1.17%

1024 12766.39 12560.84 98.39% 47.12 0.37%

Table 6.7: Scalability test for Cavity flow

n ∆x ||eu||∞ order ||ev||∞ order ||ep||∞ order

31 0.1290 3.91× 10−2 - 4.03× 10−2 - 2.50× 10−2 -

61 0.0656 7.24× 10−3 2.49 7.20× 10−3 2.54 1.63× 10−2 0.63

121 0.0331 1.71× 10−3 2.11 1.73× 10−3 2.09 8.29× 10−3 0.99

241 0.0166 3.81× 10−4 2.18 3.81× 10−4 2.19 4.70× 10−3 0.82

Table 6.8: Circular Couette flow at Re = 10, uniform mesh, 4 cores

• Inlet: u = 1, v = 0 and ∂p
∂x

= 1
Re

∂2u
∂x2 .

• Outlet: ∂u
∂x

= 0, ∂v
∂x

= 0 and ∂p
∂x

= 1
Re

∂2u
∂x2 .

• Top: u = 1, v = 0 and ∂p
∂x

= 1
Re

∂2u
∂y2

.

• Bottom: u = 1, v = 0 and ∂p
∂x

= 1
Re

∂2u
∂y2

.

6.5.3. Re < 100

At Re < 40, the flow reaches a steady state. Figure 6.12 is stream function contours for

flow past cylinder at Re = 1.5, 5, 20 & 40. Similar to the circular cylinder, for Re = 20

83

www.manaraa.com

lx

ly

r1

r2

x

y

B

Π1

Π2

Figure 6.7: Geometry of circular Couette flow

n ∆ξ ||eu||∞ order ||ev||∞ order ||ep||∞ order

31 0.0645 4.37× 10−2 - 5.35× 10−2 - 7.55× 10−2 -

61 0.0328 1.16× 10−2 1.96 1.16× 10−2 2.25 3.24× 10−2 1.25

121 0.0165 1.69× 10−3 2.81 1.71× 10−3 2.79 1.69× 10−2 0.95

241 0.0083 3.88× 10−4 2.14 3.89× 10−4 2.16 7.93× 10−3 1.10

Table 6.9: Circular Couette flow at Re = 10, stretching mesh, 4 cores

& 40, the flow separates and two symmetric recirculation vortices are formed in the wake

behind the square cylinder. The bubble size increases with larger Reynolds number. From

the study of Sen [54], steady flow starts separating at Re ≥ 1.17. In our example as shown

in Figure 6.12, we didn’t reproduce the same results for B = 0.05, 0.0625 and 0.067. From

the work of Breuer [7], separation can be observed at Re ∼ 5 similar to cylinder case. In our

method the separation was observed at Re between 7 and 8.

At Re < 40, the lift coefficient approaches to 0 and the drag coefficient Cd is constant. L

is defined same as circular cylinder example. In Table 6.12, L/D and Cd are compared with

other experimental and numerical results. Similar as circular cylinder case, the results from

84

www.manaraa.com

Top

Bottom

OutletInlet

u=1

b

x

y

R = 0.5
D

H

L

B

Figure 6.8: Geometry of flow past stationary circular/square/triangular cylinder

Figure 6.9: Streamfunction contours at Re = 20, serial

the parallel program are slightly bigger than results from serial program and other people’s

work. This is also due to the asymmetry of the parallel program, which I will explain later.

Except this, all the results are in a reasonable range and good agreement can be seen.

6.5.4. Re = 100, 200

At Re = 100 & 200, similar to the circular cylinder example, the flow is unsteady and

the famous Von Karman vortex street is formed in the wake as expected, shown in Figure

6.14. Table 6.13 compares the results of average drag coefficient C̄d and Strouhal number St

at different blockage ratio B with other people’s work, which shows good agreement. Figure

85

www.manaraa.com

Re = 20 Re = 40

L a b Cd L a b Cd

Ref. [63] - - - 2.22 - - - 1.48

Ref. [14] 0.93 0.33 0.46 0 2.13 0.76 0.59 -

Ref. [16] 0.94 - - 2.05 2.35 - - 1.52

Ref. [22] 0.91 - - 2.00 2.24 - - 1.50

Ref. [77] 0.92 - - 2.23 2.21 - - 1.66

Ref. [37] 0.93 0.36 0.43 2.16 2.23 0.71 0.59 1.61

Present(serial) 0.98 0.37 0.43 2.06 2.4 0.74 0.6 1.56

Present(parallel) 0.98 0.37 0.43 2.09 2.4 0.74 0.6 1.59

Table 6.10: Flow characteristics of flow past a circular cylinder at Re = 20 & 40

Figure 6.10: Vorticity field at Re = 100 & 200, serial

6.13 shows time evolution for drag and lift coefficients for the current method. Similarly, we

can still find the drag coefficient frequency is twice as the lift coefficient frequency. Besides,

the average drag coefficient is non-zero but average lift coefficient is zero.

6.5.5. Asymmetry

In this part, we will explain the asymmetry issue from our parallel program. During the

development, we didn’t notice the symmetry problem until we start the tests of flow past

cylinders. In the earlier stage, we proved our method is second order accurate in velocity

and first order accurate in pressure, shown in the circular Couette flow test. We didn’t

notice any symmetry issue as we only compared our results with analytical solution to see

86

www.manaraa.com

Figure 6.11: Drag and lift coefficients evolution with time at Re = 100 & 200, serial

Re = 100 Re = 200

Cd Cl St Cd Cl St

Ref. [6] 1.36± 0.015 ±0.250 - 1.40± 0.050 ±0.75 -

Ref. [50] 1.43± 0.009 ±0.322 0.172 1.45± 0.036 ±0.63 0.201

Ref. [77] 1.32± 0.013 ±0.250 0.171 1.42± 0.040 ±0.66 0.202

Ref. [37] 1.38± 0.010 ±0.337 0.169 1.37± 0.046 ±0.70 0.199

Ref. [28] 1.37± 0.009 ±0.323 0.169 1.34± 0.030 ±0.43 0.200

Present(serial) 1.39± 0.012 ±0.346 0.169 1.41± 0.043 ±0.69 0.200

Present(parallel) 1.40± 0.017 ±0.345 0.169 1.45± 0.001 ±0.69 0.200

Table 6.11: Flow characteristics of flow past a circular cylinder at Re = 100 & 200

the accuracy. Then in the flow past cylinders, the first unexpected result is that the lift

coefficients at tests of Re < 40 are bigger than those from the serial program. For example,

in the flow past a square cylinder test with Re = 40 and B = 0.05, the lift coefficient

Cl = 0.0039, which is slightly bigger than zero. Besides, we noticed the drag coefficient Cd

is bigger than our serial program’s result and other researchers’ results. The asymmetry can

also be observed from the graph of streamlines, shown in Figure 6.15. This error can come

from multiple sources: domain decomposition, communication between processors, incorrect

algorithms for parallelization, methods to maintain compatibility condition, SMG pressure

Poisson solver, truncation error and computer round-off error.

87

www.manaraa.com

Figure 6.12: Streamfunction contours at Re = 1.5, 5, 20, 40, serial

The first thing we did is to use different number of processors for the same test. The exact

same result is achieved no matter how many processors are used(even 1), which means there

is no issue from the domain decomposition or algorithms. Since we are using a uniform mesh,

the method for maintain compatibility will not bring any asymmetry. Then we checked the

communication between processors, the function in this part are also working correctly. So

the error can only come from the SMG solver, truncation error and computer round-off error.

We cannot avoid round-off error, but since we are using double precision for any floating

variables in our program, the round-off error is not significant. In order to locate whether

the error is from SMG solver or truncation error, we did another test.

At the beginning of our program, it will initialize flow field, compute the jump conditions,

solve the pressure Poisson equation, update the velocity and use it as initial flow field. In

order to figure out what causes the asymmetry, the program only runs the initialization step.

Now we have results of pressure p, right hand side of Poisson equation rhsp and velocity u

and v. Because the computational domain is symmetric along the x-axis, we can split the p,

rhsp, u and v into mirrored two parts and compare the difference between them. In Figure

88

www.manaraa.com

L/D Cd

B Re = 10 Re = 40 Re = 5 Re = 10 Re = 40

Ref. [41] 0.067 - 2.7000 4.8140 - 1.8990

Ref. [54] 0.067 - 2.7348 5.2641 - 1.8565

Present(serial) 0.067 0.61 2.77 5.1334 3.1446 1.7664

Present(parallel) 0.067 0.61 2.77 5.2595 3.5609 1.9385

Present(serial) 0.0625 0.65 2.79 5.0616 3.3133 1.7518

Present(parallel) 0.0625 0.66 2.80 5.1859 3.5219 1.9219

Ref. [17] 0.050 - 2.8220 4.8400 - 1.7670

Ref. [54] 0.050 - 2.8065 4.9535 - 1.7871

Present(serial) 0.050 0.62 2.86 4.8759 3.03 1.7154

Present(parallel) 0.050 0.62 2.86 4.9950 3.4215 1.8797

Table 6.12: Flow characteristics of flow past a square cylinder at Re = 5, 10 & 40

6.16 and 6.17, the same tests were done with different tolerances for the SMG solver. For

rhsp, maximum difference in the mirrored two parts has an amplitude of 10−10. But for the

difference of p, u and v, with smaller tolerance, the difference is smaller. So we can safely

say the asymmetry issue comes from the SMG solver.

As the SMG solver can cause the asymmetry, one way to improve the symmetry is to

use smaller tolerance. SMG is an iterative solver, by lowering the tolerance it will use more

iterations and increase the computational time. Here we tried four different tolerance for

the test of flow past a square cylinder at B = 0.05 and Re = 40. 50000 time steps were used

and we compared some characteristics in table 6.14.

From this table, the drag and lift coefficients are almost identical in the four tests, and

same as the maximum difference by comparing the mirrored parts of p, u and v. Using a

smaller tolerance cannot bring us a better symmetry in the test results. The reason why

symmetry cannot be improved is because it is limited by the order of accuracy of our method.

With a smaller tolerance, the truncation error will become the most significant error source.

During the computation, the method itself will carry the asymmetry from the SMG solver

and magnify it to the order of truncation error. A good thing can be observed here is

89

www.manaraa.com

Figure 6.13: Fluid force evolution at Re = 100 & 200, B = 0.05, serial

Figure 6.14: Vorticity field at Re = 100 & 200, serial

by using a smaller tolerance, the computational time doesn’t increase dramatically, which

means the SMG solver is very efficient. Right now we don’t come up a clear solution to solve

the asymmetry issue. In theory, we can change the SMG solver to another parallel Poisson

solver with better symmetry preservation. We can also modify our FFT solver from the

serial program into a parallel FFT solver, or we could solve only half of the computational

domain, if the problem is symmetric in nature.

6.5.6. Parallel speedup and efficiency

In this test here, we study the parallel speedup and efficiency. We used 1 to 256 cores,

1200× 600 grid numbers, 5000 time steps, Re = 40 and B = 0.05 in this test, and result is

shown in Figure 6.18. As we can see, up to 24 cores, the speedup is increasing, and then it

90

www.manaraa.com

B C̄d St

Ref. [59] 0.050 1.4770 0.1460

Ref. [47] 0.056 1.5300 0.1540

Ref. [56] 0.050 1.4936 0.1488

Ref. [57] 0.050 1.5100 0.1470

Ref. [52] 0.050 1.4878 0.1486

Ref. [54] 0.050 1.5287 0.1452

Present(serial) 0.050 1.4941 0.1479

Present(parallel) 0.050 1.5984 0.1460

Table 6.13: Flow characteristics of flow past a square cylinder at Re = 100

(a) Re = 10 (b) Re = 40

Figure 6.15: Streamline function, parallel

is decreasing. The highest speedup is 7.01 when 24 cores used. For more than 24 cores, the

parallel speedup drops.

6.6. Flow Past Two Square Cylinders

In this example, we tested if our method can handle multiple objects accurately and in

a robust manner. The most popular type of object arrangement in the tests are side-by-

side, tandem and staggered arrangement. In order to compare the numerical results with

other people’s work, here we choose tandem arrangement for two square cylinders. The

geometry is shown in Figure 6.19. Here D is the side length of the square cylinder and we

91

www.manaraa.com

Figure 6.16: Error between mirrored p, rhsp, u and v with tol = 1× 10−12

set D = 1. G is the distance between two square cylinders. We mark the left cylinder as

upstream cylinder(UC) and right cylinder as downstream cylinder(DC). We use the same

resolution and boundary conditions as circular cylinder example. In Table 6.15, we compared

our results at Re = 100 and G = 5 with other numerical results. In Chatterjee [13], they

used the PISO algorithm based finite volume solver in a collocated grid system to simulate

the flow at different low Reynolds numbers and different G. In Sohankar [58], they used

finite volume method based on the SIMPLEC algorithm and a non-staggered grid. They

also simulated flow past two tandem square cylinders with different blockage ratios at low

Reynolds number. Good agreement can be seen in Table 6.15. In Figure 6.20, the evolution

of the drag and lift coefficients for both cylinders is shown. We can see the vertex shedding

frequency for both cylinders is same. In Figure 6.21, the pressure field and vorticity field

are shown. Besides the above tests, we also simulated the same test at Re = 200. In Figure

6.22, the evolution of drag and lift coefficients at Re = 200 is shown. In Figure 6.23, the

pressure field and vorticity field at Re = 200 are shown.

92

www.manaraa.com

Figure 6.17: Error between mirrored p, rhsp, u and v with tol = 1× 10−3

6.7. Flow Around A Hovering Flapper

In this section, we simulate the movement of a flapping rounded plate and a flapping

rectangular plate. The geometry is shown in Figure 6.24. The spatial resolution is Nx ×

Ny ×Ms = 512× 512× 256. The motion of the flapper is prescribed by

xc(t) = 1.25(cos(0.8t) + 1) sin(
π

3
) (6.4a)

yc(t) = 1.25(cos(0.8t) + 1) cos(
π

3
) (6.4b)

θ(t) =
3π

4
+

π

4
sin(0.8t)(1− exp(−t)) (6.4c)

The time step is fixed in the computation, which is δt = 3.927×10−3 ≈ Tf

2000
, and Tf = 2π

0.8

is the flapping period of the hovering wing.

Previously the simulation of flow around a hovering rounded plate has been done in

[66, 77]. Here we use the same Reynolds number Re = 157 and same object geometry and

spatial resolution. Figure 6.25 shows the evolution of drag and lift coefficients of the rounded

93

www.manaraa.com

tolerance 1.0× 10−3 1.0× 10−6 1.0× 10−9 1.0× 10−12

computational time(second) 33236.27 35743.56 38265.38 42808.63

unit time 1.00 1.08 1.15 1.29

Cd 1.9222 1.9219 1.9219 1.9219

Cl 0.0039 0.0039 0.0039 0.0039

max dif. in mirrored p 0.00750642 0.00750771 0.00750772 0.00750772

max dif. in mirrored u 0.00351327 0.00351345 0.00351345 0.00351345

max dif. in mirrored v 0.00168647 0.00168658 0.00168658 0.00168658

Table 6.14: Flow characteristics of flow past a square cylinder at Re = 40 and B = 0.05
with different tolerance

Cd St

UC DC UC DC

Ref. [58] 1.539 1.292 0.143 0.143

Ref. [13] 1.5328 1.3202

Present(serial) 1.4793 1.3102 0.1380 0.1379

Present(parallel) 1.4793 1.3102 0.1380 0.1379

Table 6.15: Flow characteristics of flow past two tandem square cylinders at Re = 100,
G = 5

plate in 10 flapping periods and Figure 6.26 shows the evolution of drag and lift coefficients

of the rectangular plate.

Comparing Figure 6.25 and Figure 6.26, we can find that the drag and lift coefficients for

rectangular plate will be a little bigger than the rounded plate. This is expected because the

geometry of the object is different, and rectangular plate will experience more drag and lift

force when it moves in a fixed pattern. Figure 6.26 shows the results from serial program and

Figure 6.27 comes from the results of parallel program. In Figure 6.26 the noise is noticeable

and in Figure 6.27 the noise is even worse and hard to recognize the pattern of drag and lift

coefficients. Russell and Wang have observed same noise phenomena in [50]. In [55], Seo and

Mittal pointed out this is due to the violation of the geometric conservation law near the

immersed boundary. They adopted a cut-cell based approach to strictly enforce geometric

94

www.manaraa.com

Figure 6.18: Parallel speedup and efficiency for flow past a square cylinder

conversation and reduced the noise successfully. Further investigation is necessary to remove

the noise.

In Figure 6.28, we compared flow fields for the rounded plate at Re = 157 and t ≈ 10Tf .

Good agreement can be achieved for pressure and vorticity. In Figure 6.29, we compared

flow fields for rounded plate and rectangular plate under our new method. The difference is

big for both pressure and vorticity, but there are still some similarities between two objects.

6.8. Flow Around Multiple Hovering Flappers

In this example, we investigated the efficiency of simulation for flow around multiple

moving rounded plate flappers and rectangular plate flappers. The same geometry and

settings are used as our single flapper example. We tested both computational efficiency by

adding more objects and parallel speedup and efficiency.

95

www.manaraa.com

Figure 6.19: Geometry of flow past two square cylinders

Figure 6.20: Fluid force evolution for two square cylinders at Re = 100, G = 5, serial

6.8.1. Efficiency of around multiple hovering flappers

In this test, we simulated up to 4 objects at the same time, and the motion of them were

given by

xc(l) = xc0(l) + 1.25(cos(0.8t) + 1) sin(
π

3
), (6.5a)

yc(l) = yc0(l) + 1.25(cos(0.8t) + 1) cos(
π

3
), (6.5b)

θ(l) =
3π

4
+

π

4
sin(0.8t)(1− exp(−t)), (6.5c)

96

www.manaraa.com

Figure 6.21: Flow field for two square cylinders at Re = 100, G = 5, serial

Figure 6.22: Fluid force evolution for two square cylinders at Re = 200, G = 5, serial

where (xc0(l), yc0(l)) = (0,0), (0,-3), (-3,0) and (-3,-3) for l = 1,2,3,4. The spatial resolution

was Nx ×Ny ×Ms = 512× 512× 256. The time step was still δt = 3.927× 10−3 ≈ Tf

2000
, and

Tf = 2π
0.8

was the flapping period.

Figure 6.30 shows the vorticity field of simulation for flow around multiple rectangular

flappers. Table 6.16 gives the relative computational time for different number of flappers

with 10 flapping periods. We can find as the number of flappers increases, the increment on

the computational time is proportional to the number of vertices. For 4 rectangular flappers

case, we double the resolution so that’s why the time spent is much bigger than other cases.

Over all, a good efficiency of our method can be seen.

In table 6.17, we present the same simulation under our parallel program, and there are

some difference from the last test. In this test, We used 1025×1025 grids, 32 cores and 20000

97

www.manaraa.com

Figure 6.23: Flow field for two square cylinders at Re = 200, G = 5, serial

Figure 6.24: Geometry of flow around a flapper

time steps. Figure 6.31 gives a better view to study the relation between computational time

and number of objects. We can also find that when the number of flappers increases, the

increment on the computational time is proportional to the number of vertices.

6.8.2. Parallel speedup and efficiency

In this test, we present the results of parallel speedup and efficiency for simulating four

hovering rectangular flappers. We used 1025×1025 grids and 20000 time steps. The number

of processors was from 1 to 256. Table 6.18 and Figure 6.32 present the result of the overall

computational time and the time for the SMG solver, computing principle jump condition

98

www.manaraa.com

Figure 6.25: Drag and lift coefficients for rounded plate, serial

Figure 6.26: Drag and lift coefficients for rectangular plate, serial

[p], communication between ghost layers and communication of objects. It also gives the

percentage of each communication in the overall computational time. Figure 6.33 gives a

better view for the percentage. As we can see, the SMG solver takes more than 80% of the

overall time. The communication to compute [p] will be second most time intensive with a

maximum of 7.96%. The communication of ghost layers and objects take less than 1% of

the overall time, which is not significant. Table 6.19 and Figure 6.34 present the results of

speedup and efficiency for this test. For 1 to 24 processors, the speedup is increasing, and

from 32 processors it is decreasing. The maximum speedup is 7.0343 at 24 cores. Similarly,

we can find the overall parallel speedup and efficiency is almost identical to the SMG solver

and is mainly dependent on the behavior of SMG solver.

99

www.manaraa.com

Figure 6.27: Drag and lift coefficients for rectangular plate, parallel

Figure 6.28: Comparison of flow fields around a flapper at Re = 157 and t ≈ 10Tf . solid
line: current, dashed line: previous. Serial results.

6.8.3. Scalability tests

In this part, we tested our parallel program’s scalability for using different number of

cores and involving large number of objects.

In the first test, we tested 16 to 1024 of flappers moving at the same time. The com-

putational domain was [−10, 70] × [−10, 70], 256 cores and 500 time steps were used. The

geometry is shown in Figure 6.35 and results are shown in table 6.20. We can find that

by increasing the number of objects, the computational time for computing [p] increases

and for 1024 objects it takes more than 80% of the total computational time. As we men-

tioned in previous chapter, it has a large potential to reduce the time when solving for [p]

by recognizing the size of objects and use different method to finish the communication.

100

www.manaraa.com

Figure 6.29: Comparison of flow fields around a flapper at Re = 157 and t ≈ 10Tf . solid
line: rounded plate, dashed line: rectangular plate. Serial results.

1 2 3 4

Rounded plate 1 1.0509 1.1534 1.1977

rectangular 1.0195 1.0790 1.1526 1.4100

(The computational time corresponding to the unit value is 0.636 hours.)

Table 6.16: Relative computational time for different number of flappers(serial)

For communication of ghost layers and objects, they are all under 1% of the total time for

different number of objects, which is efficient.

In the second test, we simulated 1024 flappers with different number of cores from 16 to

800. The results is given in table 6.21. From the table, it is difficult to recognize any trend

on computational time by increasing the number of cores. We also tried to use more than

800 cores, but the simulation would fail and the reason is unclear.

In the last test here, we simulated the exact same test three times just to see if the hpc

facility will affect the computational time. In this test, we used 1024 objects and 256 cores.

By running the test three times, we have three different results on total computational time,

given in table 6.22. In the table you can find it is impossible to ignore the difference on the

computational time. Even though the three tests are exactly the same, HPC itself will affect

the computational time. The reason why the behavior can be so different is unclear.

101

www.manaraa.com

Figure 6.30: Vorticity field of multiple rectangular plate flappers, serial

1 2 3 4

Rounded plate 1.0000 1.0179 1.0186 1.1872

rectangular 1.0348 1.0543 1.1181 1.2013

(The computational time corresponding to the unit value is 4.2332 hours.)

Table 6.17: Relative computational time for different number of flappers(parallel)

6.9. Cylinders Rotating Along A Circle

In this section, we tested up to 8 circular and square cylinders rotating with the same

speed along a circle to test the efficiency of simulating multiple moving objects. The geometry

is shown in Figure 6.36, which also shows the vorticity field. The computational domain was

[−4, 4]× [−4, 4]. The moving pattern for the objects is shown as below,

θ =
π

4
(i− 1) +

π

4
t, i = 1, 8

xc = 2 cos(θ)

yc = 2 sin(θ)

In table 6.23, the result of relative computational time for different number of objects is

102

www.manaraa.com

Figure 6.31: Relative computational time for different number of flappers

shown. We used 8 cores, 10000 time steps, 513 × 513 grids, Re = 20 and ∆t = 0.0002.

We can find as the number of object increases, the increment on the computational time

is proportional to the number of vertices, as shown in Figure 6.37. Our method is able to

handle multiple moving objects efficiently.

6.10. Flow Past Triangle Cylinder

In this example we want to simulate flow past a stationary triangle cylinder at different

ratios R and different Reynolds numbers, to see how the drag coefficient will be affected.

The geometry is shown in Figure 6.8, where R = L
B
, B = 1, L = [0.1, 10] and Re = [10, 50].

Figure 6.38 shows drag coefficients under different Reynolds number Re and different ratio

R. From the figure we can see that as the Reynolds number increases, the drag coefficient

103

www.manaraa.com

Figure 6.32: Computational time of hovering flappers at different processors

Figure 6.33: Percentage of computational time for hovering flappers at different processors

decreases. The most notable thing here is the change of drag coefficient with different R.

When R increases from 0.1 to 1, the drag coefficient decreases. When R = 1.732, which

is the equilateral triangle, the drag coefficient is the smallest for Re = 30, 40, 50. When

Reynolds number increases from 2 to 10, the drag coefficient increases again.

6.11. Flow Past SMU Mascot Peruna

In the last section here, the test of flow past the SMU mascot Peruna is given. Since there

is no available results we can compare, this test is mainly conducted to prove the robustness

of our test. The mustang logo has very complex geometry and is a good example to see how

104

www.manaraa.com

Figure 6.34: Parallel speedup & efficiency of hovering flappers at different processors

our method handle non-smooth geometries. In the test, the flow past the Peruna is from

right to left at Re = 1000. In figure 6.39, the vorticity field and stream function are given.

105

www.manaraa.com

n total(s) [p](s) [p] % SMG(s) SMG % ghost layer(s) ghost layer % object(s) object %

1 33206.13 2.18 0.01% 26573.87 80.03% 0.10 0.00% 7.15 0.02%

2 25568.05 27.30 0.11% 21897.91 85.65% 24.99 0.10% 39.26 0.15%

4 19977.47 97.12 0.49% 17670.82 88.45% 23.28 0.12% 125.76 0.63%

8 14302.75 189.39 1.32% 12715.73 88.90% 55.71 0.39% 21.14 0.15%

16 4838.35 152.96 3.16% 4095.88 84.65% 17.70 0.37% 8.68 0.18%

24 4720.59 209.15 4.43% 4043.04 85.65% 29.64 0.63% 36.61 0.78%

32 5275.51 233.44 4.42% 4723.32 89.53% 16.37 0.31% 17.00 0.32%

40 5401.67 284.85 5.27% 4841.33 89.63% 20.32 0.38% 19.41 0.36%

48 6268.57 294.37 4.70% 5732.89 91.45% 18.21 0.29% 29.30 0.47%

64 6375.17 376.65 5.91% 5814.61 91.21% 14.58 0.23% 18.46 0.29%

80 7392.84 464.47 6.28% 6769.79 91.57% 13.67 0.18% 20.78 0.28%

128 9351.65 537.65 5.75% 8695.12 92.98% 11.86 0.13% 18.93 0.20%

256 11891.95 946.92 7.96% 10825.96 91.04% 13.21 0.11% 19.38 0.16%

Table 6.18: Parallel speedup & efficiency of hovering flappers at different processors

n speedup efficiency speedup(SMG) efficiency(SMG)

1 1.0000 100.00% 1.0000 100.00%

2 0.9380 46.90% 0.8446 42.23%

4 1.6622 41.55% 1.5038 37.60%

8 2.3217 29.02% 2.0898 26.12%

16 6.8631 42.89% 6.4880 40.55%

24 7.0343 29.31% 6.5727 27.39%

32 5.2180 16.31% 4.6603 14.56%

40 6.1474 15.37% 5.4890 13.72%

48 5.2972 11.04% 4.6353 9.66%

64 5.2087 8.14% 4.5702 7.14%

80 4.4917 5.61% 3.9254 4.91%

128 3.5508 2.77% 3.0562 2.39%

256 2.7923 1.09% 2.4546 0.96%

Table 6.19: Parallel speedup & efficiency of hovering flappers at different processors

106

www.manaraa.com

Figure 6.35: Geometry of 1024 hovering flappers

Objects total [p] [p] % SMG SMG % ghost ghost % object object %

16 9687.72 530.17 5.47% 8716.85 89.98% 23.06 0.24% 13.45 0.14%

32 15814.48 788.82 4.99% 14549.80 92.00% 86.52 0.55% 60.71 0.38%

64 7006.46 1160.30 16.56% 5383.13 76.83% 23.90 2 0.34% 12.75 0.18%

128 11329.23 3271.53 28.88% 7597.99 67.07% 24.42 0.22% 12.33 0.11%

256 11623.42 5668.91 48.77% 5297.57 45.58% 47.03 0.40% 26.97 0.23%

512 21202.55 12904.14 60.86% 7213.60 34.02% 64.41 0.30% 48.80 0.23%

1024 57206.17 46342.58 81.01% 8765.44 15.32% 161.57 0.28% 143.32 0.25%

Table 6.20: Scalability test for different number of hovering flappers

Cores total [p] [p] % SMG SMG % ghost ghost % object object %

16 55165.03 9483.77 17.19% 23590.23 42.76% 2586.74 4.69% 81.10 0.15%

64 19355.75 9322.37 48.16% 5671.40 29.30% 604.59 3.12% 46.78 0.24%

256 25641.38 21581.11 84.17% 3005.13 11.72% 76.98 0.30% % 63.86 0.25%

400 29277.38 25596.70 87.43% 3003.37 10.26% 37.85 0.13% 42.57 0.15%

625 60216.61 56875.73 94.45% 2823.46 4.69% 19.23 0.03% 25.09 0.04%

800 55503.99 38776.50 69.86% 16264.92 29.30% 173.91 0.31% 186.22 0.34%

Table 6.21: 1024 hovering flappers with different cores

107

www.manaraa.com

Test total [p] [p] % SMG SMG % ghost ghost % object object %

1 33954.87 28399.59 83.64% 4475.89 42.76% 115.41 0.34% 99.84 0.29%

2 34520.36 27423.43 79.44% 6024.05 29.30% 199.54 0.58% 172.39 0.50%

3 29402.48 20872.46 70.99% 7497.61 11.72% 71.93 0.24% 66.44 0.23%

Table 6.22: Test for checking HPC’s influence on computational time by running same test
three times

Figure 6.36: Geometry of flow around multiple cylinders rotating around a center

of Objects 1 2 3 4 5 6 7 8

Circular 1.0000 1.0242 1.0393 1.0648 1.0797 1.0977 1.1051 1.1283

Square 1.0041 1.0251 1.0446 1.0593 1.0827 1.0926 1.1139 1.1276

(The computational time corresponding to the unit value is 0.8752 hours.)

Table 6.23: Relative computational time for different number of objects

108

www.manaraa.com

Figure 6.37: Relative computational time for different number of objects

109

www.manaraa.com

Figure 6.38: Drag coefficients vs. ratio with different Reynolds number

110

www.manaraa.com

(a) Vorticity field (b) Stream function

Figure 6.39: Flow past Peruna from right to left at Re = 1000

111

www.manaraa.com

Chapter 7

SUMMARY AND CONCLUSIONS

In this thesis, we have presented the immersed interface method for simulating incom-

pressible viscous flow around non-smooth boundaries. This method couples the Navier-

Stokes equation and pressure Poisson equation to approximate solutions and is developed

based on a finite difference scheme. The key elements of this method are listed as below:

• Line segment panel representation of object boundaries is used in our method.

• A generalized second-order central finite difference method is used to incorporate the

jump conditions and used in the discretization.

• An method to compute principle and Cartesian jump conditions.

• A third-order Runge Kutta method is used for time integration.

• A stretched mesh is introduced and all algorithms for computing jump conditions and

jump contributions are modified based on it.

• A staggered grid is used for representation of computational domain.

• A semi-coarsening multigrid method(SMG) is used to solve the pressure Poisson equa-

tion.

• The parallel program utilizes the MPI library for communication between different

cores.

• A data structure is designed and different parallel strategies are developed for different

communications in the program.

112

www.manaraa.com

Compared to previous methods [72, 77–79], our method has better robustness and ef-

ficiency. It presents a brand new approach to solve the flow problems with non-smooth

objects, which is traditionally difficult to compute.

Different simulations were performed to investigate our method’s stability, accuracy, ro-

bustness and efficiency during the development.

• The Poisson solver test helps us examine the accuracy of the jump condition calcula-

tions, the accuracy of Poisson solver and the ability to solve problems under stretched

mesh. The second order accuracy is achieved for solving the Poisson equation.

• The lid-driven cavity flow test examines our method’s validation for flow problems

without any object, and good results are achieved.

• The circular Couette test is performed to test the accuracy for flow problems with

objects. The test results show our method is second order accurate in the infinity

norm for the velocity and first-order accurate in the infinity norm for pressure. Good

accuracy has been seen in both uniform and stretched grids.

• The tests of flow past a circular cylinder, a square cylinder and two square cylinders

show our method is stable and results are valid for Reynolds number between 5 and

1000 by comparing with previous work. Asymmetry issues were observed from the

results of the parallel program which will affect the results. This asymmetry is carried

from the SMG solver.

• The multiple hovering rounded plate and rectangle plate flappers test shows good

efficiency of our method. The extra cost to handle additional objects is proportional

to the number of the vertices used to represent the objects. The test of cylinders

translating along a circle also shows good efficiency when simulating multiple objects

moving in the domain.

• We also tested the parallel speedup and efficiency in cavity flow, flow past a square

cylinder and multiple hovering flappers. The SMG solver has a good efficiency when

using high tolerance. The time for communication between different cores is not sig-

nificant compared with the SMG solver.

113

www.manaraa.com

• The test of flow past the SMU mustang logo shows good robustness of our method and

ability to handle objects with complex geometries.

Overall, our method is stable at all the Reynolds number have been tested and shows good

agreement with prior work. The parallel speedup and parallel efficiency are dependent on

the SMG solver.

Most of the test results have matched our expectation, but there are still some weakness

we can improve. For the parallel program, because we are using SMG solver, the asymmetry

is introduced when solving the pressure Poisson equation. The computational time is also

mainly dependent on the SMG solver. Besides, our method has the potential to be more

efficient when we collect the right hand side vector in section 5.3.3 for solving the Ax = b

problem to achieve the information of [p]. When handling large number of objects moving

at the same time, this could be a potential bottleneck.

In the future, this method can be improved to handle flows with larger Reynolds num-

ber and be even more efficient. Because of the good accuracy, robustness and efficiency,

this method can be applied to simulate insects flight aerodynamics or has the potential for

applications in many other areas.

114

www.manaraa.com

BIBLIOGRAPHY

[1] B. Barney. Message passing interface (mpi). lawrence livermore national laboratory, h
ttps. computing. llnl. gov/tutorials/mpi/(available online, 2010), 2009.

[2] A. J. Bergou, S. Xu, and Z. J. Wang. Passive wing pitch reversal in insect flight.
Journal of Fluid Mechanics, 591, 2007.

[3] J. Bernsdorf, F. Durst, and M. Schäfer. Comparison of cellular automata and finite
volume techniques for simulation of incompressible flows in complex geometries.
International Journal for Numerical Methods in Fluids, 29(3):251–264, 1999.

[4] P. A. Berthelsen and O. M. Faltinsen. A local directional ghost cell approach for
incompressible viscous flow problems with irregular boundaries. Journal of
computational physics, 227(9):4354–4397, 2008.

[5] O. Botella and R. Peyret. Benchmark spectral results on the lid-driven cavity flow.
Computers & Fluids, 27(4):421–433, 1998.

[6] M. Braza, P. Chassaing, and H. H. Minh. Numerical study and physical analysis of the
pressure and velocity fields in the near wake of a circular cylinder, 1986.

[7] M. Breuer, J. Bernsdorf, T. Zeiser, and F. Durst. Accurate computations of the laminar
flow past a square cylinder based on two different methods: lattice-boltzmann and
finite-volume. International Journal of Heat and Fluid Flow, 21(2):186–196, 2000.

[8] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. SIAM, 2000.

[9] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid on distributed
memory machines. SIAM Journal on Scientific Computing, 21(5):1823–1834, 2000.

[10] C.-H. Bruneau and C. Jouron. An efficient scheme for solving steady incompressible
navier-stokes equations. Journal of Computational Physics, 89(2):389–413, 1990.

[11] P. Castonguay, D. Williams, P. Vincent, M. Lopez, and A. Jameson. On the
development of a high-order, multi-gpu enabled, compressible viscous flow solver for
mixed unstructured grids. In 20th AIAA Computational Fluid Dynamics
Conference, page 3229, 2011.

[12] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable shared memory
parallel programming, volume 10. MIT press, 2008.

115

www.manaraa.com

[13] D. Chatterjee and B. Mondal. Forced convection heat transfer from tandem square
cylinders for various spacing ratios. Numerical Heat Transfer, Part A: Applications,
61(5):381–400, 2012.

[14] M. Coutanceau and R. Bouard. Experimental determination of the main features of the
viscous flow in the wake of a circular cylinder in uniform translation. part 1. steady
flow. Journal of Fluid Mechanics, 79(02):231–256, 1977.

[15] G. Deng, J. Piquet, P. Queutey, and M. Visonneau. Incompressible flow calculations
with a consistent physical interpolation finite volume approach. Computers & fluids,
23(8):1029–1047, 1994.

[16] S. C. R. Dennis and G.-Z. Chang. Numerical solutions for steady flow past a circular
cylinder at Reynolds numbers up to 100. J. Fluid Mech., 42(03):471, 2006.

[17] A. Dhiman, R. Chhabra, A. Sharma, and V. Eswaran. Effects of reynolds and prandtl
numbers on heat transfer across a square cylinder in the steady flow regime.
Numerical Heat Transfer, Part A: Applications, 49(7):717–731, 2006.

[18] A. El Yacoubi, S. Xu, and Z. Jane Wang. Computational study of the interaction of
freely moving particles at intermediate Reynolds numbers. Journal of Fluid
Mechanics, 705:134–148, 2012.

[19] E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary
finite-difference methods for three-dimensional complex flow simulations. Journal of
Computational Physics, 161(1):35–60, 2000.

[20] R. D. Falgout and J. E. Jones. Multigrid on massively parallel architectures. In
Multigrid Methods VI, pages 101–107. Springer, 2000.

[21] C. Feichtinger, J. Habich, H. Köstler, G. Hager, U. Rüde, and G. Wellein. A flexible
patch-based lattice boltzmann parallelization approach for heterogeneous gpu–cpu
clusters. Parallel Computing, 37(9):536–549, 2011.

[22] B. Fornberg. A numerical study of steady viscous flow past a circular cylinder. Journal
of Fluid Mechanics, 98(04):819–855, 1980.

[23] U. Ghia, K. N. Ghia, and C. Shin. High-re solutions for incompressible flow using the
navier-stokes equations and a multigrid method. Journal of computational physics,
48(3):387–411, 1982.

[24] M. Kang, R. P. Fedkiw, and X.-D. Liu. A boundary condition capturing method for
multiphase incompressible flow. Journal of Scientific Computing, 15(3):323–360,
2000.

[25] J. Kim, D. Kim, and H. Choi. An immersed-boundary finite-volume method for
simulations of flow in complex geometries. Journal of Computational Physics,
171(1):132–150, 2001.

116

www.manaraa.com

[26] M.-C. Lai and C. S. Peskin. An immersed boundary method with formal second-order
accuracy and reduced numerical viscosity. Journal of Computational Physics,
160(2):705–719, 2000.

[27] P. Lallemand and L.-S. Luo. Lattice boltzmann method for moving boundaries.
Journal of Computational Physics, 184(2):406–421, 2003.

[28] D. V. Le, B. C. Khoo, and J. Peraire. An immersed interface method for viscous
incompressible flows involving rigid and flexible boundaries. J. Comput. Phys.,
220(1):109–138, 2006.

[29] L. Lee and R. J. LeVeque. An immersed interface method for incompressible
navier–stokes equations. SIAM Journal on Scientific Computing, 25(3):832–856,
2003.

[30] R. J. Leveque and Z. Li. The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources. SIAM Journal on Numerical
Analysis, 31(4):1019–1044, 1994.

[31] R. J. LeVeque and Z. Li. Immersed interface methods for stokes flow with elastic
boundaries or surface tension. SIAM Journal on Scientific Computing,
18(3):709–735, 1997.

[32] Z. Li. The immersed interface method using a finite element formulation. Applied
Numerical Mathematics, 27(3):253–267, 1998.

[33] Z. Li and K. Ito. The immersed interface method: numerical solutions of PDEs
involving interfaces and irregular domains, volume 33. Siam, 2006.

[34] Z. Li and M.-C. Lai. The immersed interface method for the navier–stokes equations
with singular forces. Journal of Computational Physics, 171(2):822–842, 2001.

[35] Z. Li, T. Lin, and X. Wu. New cartesian grid methods for interface problems using the
finite element formulation. Numerische Mathematik, 96(1):61–98, 2003.

[36] J. H. Lienhard. Synopsis of lift, drag, and vortex frequency data for rigid circular
cylinders. Technical Extension Service, Washington State University, 1966.

[37] M. N. Linnick and H. F. Fasel. A high-order immersed interface method for simulating
unsteady incompressible flows on irregular domains. J. Comput. Phys.,
204(1):157–192, 2005.

[38] S. McKee, M. F. Tomé, V. G. Ferreira, J. a. Cuminato, a. Castelo, F. S. Sousa, and
N. Mangiavacchi. The MAC method. Comput. Fluids, 37(8):907–930, 2008.

[39] R. L. Meakin. Composite overset structured grids. In Handbook of Grid Generation.
CRC Press, 1998.

117

www.manaraa.com

[40] E. Momox, N. Zakhleniuk, and N. Balkan. Solution of the 1d schrödinger equation in
semiconductor heterostructures using the immersed interface method. Journal of
Computational Physics, 231(18):6173–6180, 2012.

[41] B. Paliwal, A. Sharma, R. Chhabra, and V. Eswaran. Power law fluid flow past a
square cylinder: momentum and heat transfer characteristics. Chemical engineering
science, 58(23):5315–5329, 2003.

[42] P. P. Patil and S. Tiwari. Effect of blockage ratio on wake transition for flow past
square cylinder. Fluid Dynamics Research, 40(11-12):753–778, 2008.

[43] C. S. Peskin. Flow patterns around heart valves: a numerical method. Journal of
computational physics, 10(2):252–271, 1972.

[44] C. S. Peskin. The immersed boundary method. Acta numerica, 11:479–517, 2002.

[45] N. A. Petersson. Hole-cutting for three-dimensional overlapping grids. SIAM Journal
on Scientific Computing, 21(2):646–665, 1999.

[46] A. Prosperetti and G. Tryggvason. Computational methods for multiphase flow.
Cambridge university press, 2009.

[47] J. Robichaux, S. Balachandar, and S. Vanka. Three-dimensional floquet instability of
the wake of square cylinder. Physics of Fluids (1994-present), 11(3):560–578, 1999.

[48] A. M. Roma, C. S. Peskin, and M. J. Berger. An adaptive version of the immersed
boundary method. Journal of computational physics, 153(2):509–534, 1999.

[49] D. Rossinelli and P. Koumoutsakos. Vortex methods for incompressible flow simulations
on the gpu. The Visual Computer, 24(7):699–708, 2008.

[50] D. Russell and Z. J. Wang. A Cartesian grid method for modeling multiple moving
objects in 2D incompressible viscous flow. J. Comput. Phys., 191(1):177–205, 2003.

[51] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[52] A. K. Sahu, R. Chhabra, and V. Eswaran. Two-dimensional unsteady laminar flow of a
power law fluid across a square cylinder. Journal of Non-Newtonian Fluid
Mechanics, 160(2):157–167, 2009.

[53] S. Schaffer. A semicoarsening multigrid method for elliptic partial differential equations
with highly discontinuous and anisotropic coefficients. SIAM Journal on Scientific
Computing, 20(1):228–242, 1998.

[54] S. Sen, S. Mittal, and G. Biswas. Flow past a square cylinder at low reynolds numbers.
International Journal for Numerical Methods in Fluids, 67(9):1160–1174, 2011.

[55] J. H. Seo and R. Mittal. A sharp-interface immersed boundary method with improved
mass conservation and reduced spurious pressure oscillations. Journal of
computational physics, 230(19):7347–7363, 2011.

118

www.manaraa.com

[56] A. Sharma and V. Eswaran. Heat and fluid flow across a square cylinder in the
two-dimensional laminar flow regime. Numerical Heat Transfer, Part A:
Applications, 45(3):247–269, 2004.

[57] A. Singh, A. De, V. Carpenter, V. Eswaran, and K. Muralidhar. Flow past a
transversely oscillating square cylinder in free stream at low reynolds numbers.
International journal for numerical methods in fluids, 61(6):658–682, 2009.

[58] A. Sohankar and A. Etminan. Forced-convection heat transfer from tandem square
cylinders in cross flow at low reynolds numbers. International Journal for Numerical
Methods in Fluids, 60(7):733–751, 2009.

[59] A. Sohankar, C. Norberg, and L. Davidson. Low-reynolds-number flow around a square
cylinder at incidence: study of blockage, onset of vortex shedding and outlet
boundary condition. International journal for numerical methods in fluids,
26(1):39–56, 1998.

[60] N. Suhs, S. Rogers, and W. Dietz. Pegasus 5: an automated pre-processor for
overset-grid cfd. In 32nd AIAA Fluid Dynamics Conference and Exhibit, page 3186,
2002.

[61] J. Thibault and I. Senocak. Cuda implementation of a navier-stokes solver on multi-gpu
desktop platforms for incompressible flows. In 47th AIAA aerospace sciences
meeting including the new horizons forum and aerospace exposition, page 758, 2009.

[62] J. C. Thibault and I. Senocak. Accelerating incompressible flow computations with a
pthreads-cuda implementation on small-footprint multi-gpu platforms. The Journal
of Supercomputing, 59(2):693–719, 2012.

[63] D. J. Tritton. Experiments on the flow past a circular cylinder at low Reynolds
numbers, 1959.

[64] Y.-H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method for flow in
complex geometry. Journal of computational physics, 192(2):593–623, 2003.

[65] H. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna. A sharp interface
cartesian grid method for simulating flows with complex moving boundaries.
Journal of Computational Physics, 174(1):345–380, 2001.

[66] Z. J. Wang. Two dimensional mechanism for insect hovering. Phys. Rev. Lett.,
85(10):2216–2219, 2000.

[67] J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly. The mac method-a
computing technique for solving viscous, incompressible, transient fluid-flow
problems involving free surfaces. Technical report, Los Alamos Scientific Lab., Univ.
of California, N. Mex., 1965.

[68] J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly. The mac method. Technical
report, Los Alamos Scientific Laboratory of the University of California, 1966.

119

www.manaraa.com

[69] A. Wiegmann and K. P. Bube. The immersed interface method for nonlinear
differential equations with discontinuous coefficients and singular sources. SIAM
Journal on Numerical Analysis, 35(1):177–200, 1998.

[70] A. Wiegmann and K. P. Bube. The explicit-jump immersed interface method: finite
difference methods for pdes with piecewise smooth solutions. SIAM Journal on
Numerical Analysis, 37(3):827–862, 2000.

[71] M. Xu, F. Chen, X. Liu, W. Ge, and J. Li. Discrete particle simulation of gas–solid
two-phase flows with multi-scale cpu–gpu hybrid computation. Chemical
engineering journal, 207:746–757, 2012.

[72] S. Xu. The immersed interface method for simulating prescribed motion of rigid objects
in an incompressible viscous flow. Journal of Computational Physics, 227(10):5045 –
5071, 2008.

[73] S. Xu. Singular forces in the immersed interface method for rigid objects in 3D.
Applied Mathematics Letters, 22(6):827–833, 2009.

[74] S. Xu. A boundary condition capturing immersed interface method for 3D rigid objects
in a flow. Journal of Computational Physics, 230(19):7176–7190, 2011.

[75] S. Xu and M. P. Martin. Assessment of inflow boundary conditions for compressible
turbulent boundary layers. Physics of Fluids, 16(7):2623–2639, 2004.

[76] S. Xu and G. D. Pearson. Computing jump conditions for the immersed interface
method using triangular meshes. Journal of Computational Physics, 302:59–67,
2015.

[77] S. Xu and Z. J. Wang. An immersed interface method for simulating the interaction of
a fluid with moving boundaries. Journal of Computational Physics, 216(2):454–493,
2006.

[78] S. Xu and Z. J. Wang. Systematic Derivation of Jump Conditions for the Immersed
Interface Method in Three-Dimensional Flow Simulation. SIAM Journal on
Scientific Computing, 27(6):1948–1980, 2006.

[79] S. Xu and Z. J. Wang. A 3D immersed interface method for fluid-solid interaction.
Computer Methods in Applied Mechanics and Engineering, 197(25-28):2068–2086,
2008.

[80] T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An accurate cartesian grid method for
viscous incompressible flows with complex immersed boundaries. Journal of
computational physics, 156(2):209–240, 1999.

120

	 LIST OF FIGURES
	 LIST OF TABLES
	 1. INTRODUCTION
	1.1. Problem Statement
	1.2. Literature Review
	1.3. Immersed Interface Method
	1.4. Parallel/High-Performance Computing
	1.5. Outline

	 2. GOVERNING EQUATIONS AND FINITE DIFFERENCE SCHEMES
	2.1. Governing Equations
	2.2. Finite Difference Scheme

	 3. FORMULATION OF JUMP CONDITIONS
	3.1. Jump Conditions for
	3.1.1. Principle jump conditions
	3.1.2. First-order Cartesian jump conditions
	3.1.3. Second-order Cartesian jump conditions

	3.2. Jump Conditions for pressure p
	3.2.1. First-order Cartesian jump conditions
	3.2.2. Second-order Cartesian jump conditions
	3.2.3. Principle jump conditions

	3.3. Fluid Force Calculation

	 4. IMPLEMENTATION OF THE IMMERSED INTERFACE METHOD
	4.1. Spatial Discretization
	4.1.1. MAC/Staggered grid
	4.1.2. Object interface representation
	4.1.3. Pressure Poisson solver
	4.1.4. Boundary conditions

	4.2. Temporal discretization
	4.2.1. Runge-Kutta method
	4.2.2. CFL number

	4.3. Method Summary

	 5. PARALLELIZATION OF THE IMMERSED INTERFACE METHOD
	5.1. Introduction of Parallel Computing
	5.1.1. Domain decomposition
	5.1.2. Message Passing Interface(MPI)

	5.2. Data Structure
	5.2.1. Parameters
	5.2.2. Flow field variables
	5.2.3. Jump conditions
	5.2.4. Jump contributions

	5.3. Information Exchange/Communication
	5.3.1. Ghost layers of flow field
	5.3.2. Objects information
	5.3.3. Calculation of principle jump conditions for p
	5.3.4. Collection communication
	5.3.5. Parallel I/O

	5.4. Mesh Stretching
	5.4.1. Mesh stretching
	5.4.2. Finite difference schemes

	5.5. Pressure Solver
	5.5.1. Multigrid method
	5.5.2. Hypre library
	5.5.3. Compatibility condition

	5.6. Jump Contributions
	5.6.1. Jump contribution of pressure
	5.6.2. Jump contribution of interpolation

	 6. NUMERICAL SIMULATIONS
	6.1. Poisson Solver With Jump Conditions
	6.2. Lid-driven Cavity Flow
	6.2.1. Validation
	6.2.2. Parallel speedup and efficiency
	6.2.3. Scalability Test

	6.3. Circular Couette Flow
	6.4. Flow Past Circular Cylinder
	6.4.1. Geometry of the computational domain
	6.4.2. Boundary conditions
	6.4.3. Re=20, 40
	6.4.4. Re=100, 200

	6.5. Flow Past Square Cylinder
	6.5.1. Numerical tests setup
	6.5.2. Boundary conditions
	6.5.3. Re<100
	6.5.4. Re=100, 200
	6.5.5. Asymmetry
	6.5.6. Parallel speedup and efficiency

	6.6. Flow Past Two Square Cylinders
	6.7. Flow Around A Hovering Flapper
	6.8. Flow Around Multiple Hovering Flappers
	6.8.1. Efficiency of around multiple hovering flappers
	6.8.2. Parallel speedup and efficiency
	6.8.3. Scalability tests

	6.9. Cylinders Rotating Along A Circle
	6.10. Flow Past Triangle Cylinder
	6.11. Flow Past SMU Mascot Peruna

	 7. SUMMARY AND CONCLUSIONS
	BIBLIOGRAPHY
	Blank Page

